締切済み 熱力学のことで質問です。 2009/06/13 18:26 可逆熱機関のサイクルをp-V線図上に表したときおよびT-S線図上に表したときに、それぞれ囲まれた面積は何を意味するんですか。 みんなの回答 (1) 専門家の回答 みんなの回答 noname#160321 2009/06/13 19:26 回答No.1 こんなの見て下さい、↓ http://homepage2.nifty.com/eman/thermo/entropy.html 出来れば、これ↓読んで下さい。 http://homepage2.nifty.com/eman/thermo/contents.html 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 熱力学の問題です。助けてください 熱力学のレポートです。わからないので教えてください。 1Kgの空気を動作流体とし、高温熱源T=600K、低温熱源T=300Kを用いる2種類の熱力学サイクルの計算を行い比較する。 (1)カルノーサイクル(1→2:等温圧縮、2→3:断熱過程、3→4:等温膨張、4→1:断熱膨張) T1=300K、P1=0.1MPa、P2/P1=2.0、T3=600Kとする。 (2)等積・等圧過程からなるサイクル(1→2:等圧冷却、2→3:等積加熱、3→4:等圧加熱、4→1等積冷却)状態2と4を(1)と等しくする。 問題1 各状態の温度、圧力、比体積を求める。 問題2 各過程の受熱量、仕事量、エントロピー変化を求める。 問題3 両サイクルのPーV線図、T-S線図を作成する。エントロピーは最低の状態を0とする。 問題4 サイクル全体のエントロピー変化が0になることを確認する。 問題5 サイクルの正味の仕事と熱効率を求める。カルノーサイクルの理論熱効率と比較し、簡単な考察を考える 工業熱力学 途中の計算式がどこが間違えているか照らし合わせたいので途中計算も教えてください。 カルノーの冷凍機サイクルでP-v線図における1サイクルの面積は14cm^(2)である。Pの尺度は1cm=0.05MPa、vの尺度は1cm=150cm^(3)/kgである。(a)1サイクル当たりの必要仕事はいくらか、(b)低熱源からうばう熱量が418J/kg・cycleであるとき、高熱源へはき出される熱量はいくらか。 という問題です。 答えは(a)105J/kg(b)523/kg になるみたいです。 熱力学の可逆過程について 状態線図において、(p1,v1,T1)から(p2,v2,T2)に変化する過程を(1)とします。 (p3,v3,T3)から(p4,v4,T4)に変化する過程を(2)とします。 もし、(p1,v1,T1)=(p3,v3,T3)、(p2,v2,T2)=(p4,v4,T4)であれば、変化の過程で系が得る(失う)熱量δQは等しいですか? 熱力学の第一法則より de = δq + δw として、δw = - p dv とあらわせるので、 δq = de + p dv となります。 e,p,v はそれぞれ、完全微分の成り立つ状態関数なので、 積分したとき、その経路に拠らず、始点と終点だけで、変化量は決まる。 よって、δq も経路に拠らず、始点と終点が一致していれば、あらゆる可逆過程において等しい。 とする説明の仕方はただしいでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 熱力学 (1)電熱器とクーラーの逆用(室内に室外機)で暖房するにはどちらがエネルギー効率がよいと考えられるか? 授業ではクーラー逆用の方が効率がいいと言ってました。でも理由がピンときません。誰か知っている人いましたら教えてください。 (2)可逆熱機関の熱効率はいかなる熱機関よりも優ることを証明せよ。これからすべての可逆熱機関の効率は等しいことが従う。 可逆熱機関が他の機関より効率がいいのはなんとなくわかったんですが、効率が等しいとはなぜですか?もしよければ効率が他の機関より優るという点も含め、教えてください 熱機関の効率などに関する質問です。 熱機関の効率に関する質問です。 物理学(改定版)という本で以下のような記述がありました。 『2つの熱源T_1,T_2(温度で熱源そのものを示すことにする)のあいだで働くものを考え、それをEと名づけよう。Eは高温熱源T_2から熱Q_2をとり、外にWだけの仕事をして、Q_1だけの熱を低熱源T_1に与えて1サイクルを終えるものとする。いま、同じ熱源で働き、1サイクルでWだけの仕事を要するカルノー冷凍機E_0を用意し、これをEと連結し、Eがする仕事WでこのE_0を運転することにする。E_0はT_1からQ_01だけの熱をとりQ_02だけの熱をT₂に与える。 (中略) EとE_0の効率をη,η_0とすると、 η=W/Q_2,η_0=W/Q_02 であるから、 Eが可逆機関なら η=η_0=(T_2‐T_1)/T_2 Eが不可逆機関なら η<η_0=(T_2‐T_1)/T_2 ということになる。つまり、2つの熱源T_1,T_2のあいだで働く可逆熱機関の効率はすべて(T_2‐T_1)/T_2に等しく、不可逆熱機関の効率は必ずこれより小さい。』 ここでいくつか質問があります。 質問(1) カルノー冷凍機E_0の効率が η_0=W/Q_02 となるのはどうしてですか?カルノー冷凍機の場合の熱効率の定義がわかりません。 質問(2) 『Eが可逆機関なら η=η_0=(T_2‐T_1)/T_2 Eが不可逆機関なら η<η_0=(T_2‐T_1)/T_2 ということになる。つまり、2つの熱源T_1,T_2のあいだで働く可逆熱機関の効率はすべて(T_2‐T_1)/T_2に等しく、不可逆熱機関の効率は必ずこれより小さい』 となるのはどうしてなのでしょうか? どうかよろしくお願いします。 熱力学のエントロピーに関する質問 温度TをU,V,Nの関数と見なし、エントロピーS(T,V,N)をS~(U,V,N)と書くとき、∂S~(U,V,N)/∂V=p(T,V,N)/Tとなることを示すという問題に関して質問です。 テキストに載っている導出は、 p=-∂F(T,V,N)/∂V=T{∂S(T,V,N)/∂V+∂T(U,V,N)/∂V・∂S(T,V,N)/∂T}=T∂S~(U,V,N)/∂V というものです。 ここで、2番目の等号が成り立つのは何故かがどうしても分かりません。 どのような計算過程を経てこうなるのかを教えていただけないでしょうか。 熱力学の問題です。 以前、OKWEBに投稿されていた質問で、回答がないまま締め切られていた問題です。興味があったので、計算結果を付加して投稿しました。解いては見たのですが、自信がないので指摘をお願いします。(長文です) (元の質問)物理の問題3問の答えと解説をお願いします。 底のある円筒容器に気体が上部にあるピストンで封じられている。気体は円筒容器底に取り付けられたヒーターによって暖めることができる。円筒容器の内側の上下にストッパーがあり、ピストンはこれら2つのストッパーの間ではなめらかに動くことができる。ただし、ピストンの質量は無視できるものとし、ピストンの断面積をS、移動可能距離をLとする。また、重力加速度の大きさをgとする。 (1) 最初、ピストンは下のストッパーに接しており、このときの容器内の気体の圧力p0と絶対温度T0は大気と等しく、体積はV0であった。ピストンの上に質量Mのおもりをのせて、ヒーターにより気体を暖めた。気体の圧力がp1になったとき、ピストンはストッパーを離れて上昇し始めた。p1はいくらか。 (計算結果)p1S=p0S+Mgよりp1=p0+Mg/S となりませんか。 (2) ピストンが上のストッパーに当たったときに、ヒーターからの熱の供給を止め、ピストンの上からおもりを取り除いた。その後、気体から熱が大気中に逃げ、温度が下がった。ピストンが上のストッパーから離れ、下降し始めるときの絶対温度はT0の何倍か。 (計算結果)ピストンが上のストッパーにあるときの体積V=V0+LSなので、 ボイルシャルルの法則からP1V/T=P0V0/T0より、 TはT0の(p0+Mg/S)(V0+LS)/P0V0倍になる。 (3) さらに十分に時間が経過したのちに、容器内の気体の絶対温度は大気と同じT0になった。このとき、ピストンは下のストッパーに接して止まり、気体は最初の状態に戻った。このようにしてピストンが上下のストッパーを往復する間に、気体が外部に対してした全仕事はいくらか。 (計算結果)仕事は、状態変化した間の面積なので、 ピストンが上昇した時の仕事は、w1=p1Δv=p1{(V0+LS)-V0}=p1LS 下降して減少した面積はp0V0なので、 全仕事は、w1-p0V0=(LS-V0)p0+MgL となりました。 よろしくお願いします。 物理の問題3問の答えと解説をお願いします。 底のある円筒容器に気体がピストンで封じられている。気体は底に取り付けられたヒーターによって暖めることができる。円筒容器の内側の上下にストッパーがあり、ピストンはこれら2つのストッパーの間ではなめらかに動くことができる。ただし、ピストンの質量は無視できるものとし、ピストンの断面積をS、移動可能距離をLとする。また、重力加速度の大きさをgとする。 (1) 最初、ピストンは下のストッパーに接しており、このときの容器内の気体の圧力p0と大気の絶対温度T0に等しく、退席はV0であった。ピストンの上に質量mのおもりをのせて、ヒーターにより気体を暖めた。気体の圧力がp1になったとき、ピストンはストッパーを離れて上昇し始めた。p1はいくらか。 (2) ピストンが上のストッパーに当たったときに、ヒーターからの熱の供給を止め、ピストンの上からおもりを取り除いた。その後、気体から熱が大気中に逃げ、温度が下がった。ピストンが上のストッパーから離れ、下降し始めるときの絶対温度はT0の何倍か。 (3) さらに十分に時間が経過したのちに、容器内の気体の絶対温度は大気と同じT0になった。このとき、ピストンは下のストッパーに接して止まり、気体は最初の状態に戻った。このようにしてピストンが上下のストッパーを往復する間に、気体が外部に対してした全仕事はいくらか。 熱力学の証明 熱力学の証明 マイヤーの式 Cp - Cv = Rが成り立つことを、 断熱可逆(P1.V1)→(P2.V2) 定圧可逆(P2.V2)→(P2.V1) 定積可逆(P2.V1)→(P1.V1) からなる循環過程の内部エネルギー変化を利用して証明せよ。 この問題の解説、お願いします。 熱力 また質問させていただきます。 熱機関があります。(理想気体を満たした) (1)A(V,P,T)→B(2V,P,2T) (2)B(V,2P,2T)→C(aV,cP,acT) (3)C(aV,cP,acT)→D(aV,dP,adT) (4)D(aV,dP,adT)→A(V,P,T) a>2、c、dは定数です。 A→B→C→D→Aの一巡で気体が外部にする正味の仕事(=W)は(1)のときに吸収した熱量(=Q1)と(3)のとき放出した熱量(=Q2)を使って表しなさい。 という問題です。((1)~(4)はいらないかもしれません) 熱力の第一法則からW=Q1-Q2となるそうですが、なぜかわかりません。 説明お願いいただけますか? 熱力学(サイクルの熱効率)について 熱力学(サイクルの熱効率)について 初歩的な問題かもしれませんが答えと解き方を詳しく教えてください。 「図に示すような、比熱一定の理想気体により作動するサイクルがある。(過程は全て可逆、比熱比は1.4とする。) 1→2→3→4→1のサイクルは1→2が等容変化、2→3は等温変化、3→4が等容変化、4→1が等温変化である。 点1の温度T1を400K、点2の温度T2を3000Kとするとき、サイクル1→2→3→4→1の熱効率を求めよ。」 よろしくお願いします。 熱効率が最大であることの証明について 熱力学の問題です。 温度T1(k)の高温熱源と温度T2(k)の低温熱源との間に、 非可逆サイクルの機関と可逆サイクルの機関を、軸を直結して併置する。 このようにして、高温と低温熱源の温度が決まれば、 可逆サイクルの熱効率が最大であることを証明しなさい。 という問題なのですが、よくわかりませんでした。 この問題についてわかる方いましたら教えてください! 熱力学のことでお願いします。 断熱変化における(P,V)および(P,T)の関係式を熱力学第一法則および状態方程式より誘導してください。 PV^n=一定 T/P^(n-1/n)=一定 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 熱力学 熱力学第一法則に関する質問です。内部エネルギー(U)は体積一定で加えられる熱量と等しいと定義されています。体積一定であれば、膨張の仕事がなくなるので(pdv = 0)、非膨張の仕事がなければ dU = dq であると。 しかし、さらにテキストを読み進めていくと、可逆変化ではdq = TdSとなり、 dU = TdS - pdv を用いてマウスウェルの関係式は考えられています。 このようにpdvが登場してくるのですが、どのような考え方をすれば、違和感なく理解できるのでしょうか? ご回答よろしくお願い致します。 p:圧力 v:体積 T:温度 q:外界からの熱量 U:内部エネルギー S:エントロピー d:微分記号 エントロピーについて(熱力学) 「熱容量がCの2つの等しい物体がT1、T2で、これらを接触させて温度を等しくしたときのエントロピーの変化をもとめよ。また、不可逆変化であることを示せ。」 という問題なのですが ΔS=Clog(T1+T2)^2 / 4T1T2 までは分かるのですが 解答を見ると (T1+T2)^2 - 4T1T2 = (T1-T2)^2 > 0 であるからΔS > 0 よって不可逆変化。 と書いていました。 (T1+T2)^2 - 4T1T2 なぜ引き算がでてくるのかが分かりません。 物理というより数学の質問ですがよろしくお願いします。 熱力学 一定温度Tで理想気体1モルをV1からV2(V1>V2)へ可逆的に圧縮するとき、 (i)系のエントロピー変化、(ii)系の自由エネルギー変化、(iii)発熱量を求めようと思っています。 (i)はΔS=Rln(V1/V2), (ii)はΔG=-TRln(V1/V2)ではないかと思っているんですが自信がありません。答えが合っているか教えてください。あと、(iii)の発熱量の求め方がよくわからないので教えてください。お願いします 準静的過程,可逆サイクル,熱効率 (熱力学) 熱力学に関して以下の様に理解しております. しかしこの理解はどこかが間違っているはずです. そこで,その間違いはどこなのか,どの様に間違っているのかを指摘して下さると幸いです. (1) 任意のサイクルにおいて,そのサイクルを常に平衡を保った状態で(準静的に) 完了すれば,そのサイクルは可逆サイクルである. (2) 可逆サイクルは最も熱効率のよいサイクルである. (3) (1),(2)より,任意のサイクルを準静的に完了すれば,そのサイクルは 最も熱効率の良いサイクルである. 上の理解はどこかが間違っているはずなのです. なぜなら,(3)より,カルノーサイクルでもオットーサイクルでもディーゼルサイクルでもブレイトンサイクルでも, サイクルを準静的に完了すれば全て同じ熱効率となってしまうためです. re:5374013 サイクルの最大効率と異なるサイクルの効率の比較について 質問番号:5374013 http://oshiete1.goo.ne.jp/qa5374013.html に関して解答を書いている間に締め切られてしまいましたので、あらたに質問として起こします。 熱力学でサイクルの効率を考えるとき、熱効率は η=W/Q1 (Q1:吸熱) で定義されます。ここでエネルギーの保存則 W = Q2 - Q1 (Q2:放熱 Q1:吸熱) を使うと熱効率は η=W/Q1=1-Q2/Q1 と書くことができます。 ここで、このエネルギー保存の式がサイクルの可逆不可逆によらず成立しているとしてしまうと、不可逆のカルノーサイクルの効率も最大効率になってしまいます。わかりやすく、不可逆が断熱過程にあるとして等温過程を可逆とするとQ1, Q2は全体が可逆なカルノーサイクルと正確に等しいですから。したがって、このエネルギー保存の式は不可逆過程では成り立たず、散逸するエネルギーをδQとして Q1-Q2 = W + δQ > W と修正する必要があります。 不可逆過程が存在する場合、サイクルが完全に元に戻っているとすると、外部のどこかにエントロピー生成があるはずです。不可逆過程では熱源も外部も含めた全体を一つの孤立系として、全体のエントロピーが増大しないといけませんから。したがって、このエントロピー生成によって生じた束縛エネルギーがδQに対応するはずです。 前置きはこのくらいにして、本題に入ることにします。 少し考えてみるとカルノーサイクルとほかのサイクル、たとえば、オットーサイクルの効率を比較するというのは結構厄介な問題だということに気がつきます。 可逆カルノーのサイクルに限っても、T1=500Kに固定したとしてT2=400KとT2=100KではT2=100Kの方が効率がいいですが、どちらも熱力学的な意味では最大効率です。 オットーサイクルにしても、四つの温度をどう設定するかで効率の値は変わってきますが、全過程が可逆であればそれは値の大小によらず全て熱力学的な意味では最大効率です。 なので、可逆サイクルであっても条件の設定によって最大効率のときの効率の値は変わってしまいますから、異なるサイクルの効率を比較する場合、条件を対等にして比較しないと意味がないことになります。そこで、この対等な条件という物を模索しないといけないのですが、これがどうにもわからないのです。結局考えてみても、Q1, Q2の値が等しいという条件で外に取り出せるWの大小を比較するしかないように思うのですが、そうすると、可逆サイクルではW=Q1-Q2が成り立つので、可逆であればすべてのサイクルの効率は等しいという結論になってしまいます。 よくみるカルノーサイクルとオットーサイクルの効率の比較では、オットーサイクルの最高温度、最低温度をカルノーサイクルの熱源の温度に等しく置いています。こうすると、オットーサイクルのTS線図がカルノーサイクルのTS線図の中にすっぽり入ってしまうのでオットーサイクルのほうが効率が低いことになるのですが、これは、 「オットーサイクルの最高温度、最低温度をカルノーサイクルの熱源の温度に等しく置く」 という新たな条件を付加したうえでの比較なので、熱力学的な最大効率とは無関係と思われます。 以上を踏まえまして、異なるサイクル間の熱力学的な意味での効率の比較について、ご意見を賜りたいと思います。 熱力学 ・熱力学の第二法則を表す、Thomsonの原理とClausiusの原理が同等であることは、どのように証明するのですか? ・ある系が等温可逆サイクルを行うとき、仕事の総和は0になることは、どのように証明するのですか? ・熱力学第二法則から質量作用の法則はどのように導くのですか? どの質問でもいいので、わかる方は教えて下さい。 熱力学 圧力 温度が一定だとすると、 dH=dqとなり、エンタルピーは状態量なのでどの経路でもdqは等しくなり、 dqは可逆経路での熱ともいうことができ、 dS=dq(可逆)/T=dH/T よってdH-TdS=0 となりますよね。 ということはこのとき dG=dH-TdS=0となってしまい、 圧力と温度が一定のときの自発変化の指標となる dG<0 が出てこないような気がするのですが、 どこがおかしいのでしょうか 熱力学に関する問題が解けません 温度T,圧力p,体積v,内部エネルギーu,エントロピーs,エンタルピーhとし、体積変化だけが仕事に関係する。また系は準静的である 熱力学第一法則をもとに、独立な状態量をp,Tとおくことによって Tds={(∂h/∂p)T -v}dp+(∂h/∂T)p dT となることを示せ。またこれをもとに (∂h/∂p)T =v-T(∂v/∂T)p となることを示せ。 という問題です。自分で途中まで解いてみたんですが上式を導けません。誰か教えてください。お願いします。 下に途中まで解いた結果を書きます。 du=(∂u/∂P)T dP+(∂u/∂T)p dT ・・・(1) Tds=du+pdv であり(1)を代入 Tds=(∂u/∂p)T dp+(∂u/∂T)p dT+pdv ・・・(2) u=h-pv より(2)に代入 するところから間違っていると思います。 ちなみに( )のすぐ隣の文字は下文字です。( )T←下文字 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など