自然対数の底e ネイピア数の定義と性質
自然対数の底eですが、e = lim(n→∞) (1+1/n)^n とあります(定義でしょうか?)。
一方、lim(x→ -∞)(1+1/x)^x = e とするものもあります。これは定義から誘導されるでしょうか。簡単だと思ったのですが。1よりちょっと大きいものの∞乗であり、下は1よりちょっと小さいものの-∞乗ってことですから等価だって示されそうなのですが。
付随しておたずねしますが、lnとか、微分とか、複素関数とかとにかくeはあちこちに出てきてゆるぎない関係式を示すのですが、どれが定義で、どれがその定義から誘導される性質なのか混乱する面があります。あるいは定義が複数あって等価であるとかです。すくなとも冒頭に示したものは簡単にいけるかと思ったのですが、ちょっとてこずりました。
あとちょっと不思議なのですが、自然対数の底eのことをネイピア数といいますが、そういう風に明示的に書かないテキストもいっぱいあるように思います。呼称についてあんまり統一されていない理由が何かあるでしょうか。
よろしくお願いします。