• ベストアンサー

3^-1.5

質問のレベルが低くて恥ずかしいのですが、タイトルで書きましたように、何乗にあたる部分が整数の場合は、分かるのですが、何乗にあたる部分が小数点とマイナスで表示された場合は、どのように理解すればよいか教えてください。 数学が、得意ではないので、算数に近い形で、説明や、イメージの仕方を、教えていただければ大変助かります。

質問者が選んだベストアンサー

  • ベストアンサー
  • banakona
  • ベストアンサー率45% (222/489)
回答No.4

まず、「何乗にあたる部分(指数)」がマイナスの場合ですが、これはマイナスをとった数の逆数になります。例えば、  3^(-2)=1/(3^2)  0.2^(-5)=1/((0.2)^2) となります。 次に指数が小数の場合ですが、これはちょっと難しいので小数第1位までとしましょう。 その前に指数法則の復習。例えば  (2^3)^4=2^(3×4)=2^12 です。つまり「2の3乗」という数を4乗すると、2の「3と4の積」乗になります。指数が整数の場合は明らかだと思います。 で、この指数法則は、指数が小数の場合にも成り立って欲しい。 だからもし3^0.1という数があったとすると、これを10乗すると上の指数法則により  (3^0.1)^10=3^(0.1×10)        =3^1=3 となるハズです。つまり、3^0.1は3の10乗根となります。 だから3^1.5は、「3の10乗根」を15乗したものであり、これは3の平方根を3乗したものになります。 以上から3^(-1.5)は「3の平方根を3乗した数の逆数」になります。 補足しておくと、3の(1/n)乗は、3のn乗根になります。  最後に蛇足ですが、 >何乗にあたる部分が整数の場合は、分かるのですが -3や-41も整数ですよ。

その他の回答 (5)

  • ORUKA1951
  • ベストアンサー率45% (5062/11036)
回答No.6

何乗にあふる右肩の数字を指数といいます。 指数については、次のように考えると良いです。 まず、数直線を考えます。(右に行くほど縮尺が小さくしてあります。)   0 1 2・・・10・20・・・100・200・・・1000  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄  ここで、適当な数、分かりやすいので10のX乗数について考えて見ます。   0 1 2・・・10・20・・・100・200・・・1000  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄         10     10^2    10^3 この指数だけに注目すると        (1)      (2)     (3)           10倍     10倍 と、指数が倍になると、(元の数)倍だけ増えていきます。 【では!!!!】ここが大事!! ★指数が0のときは?   10^0    10     10^2    10^3 この指数だけに注目すると   (0)    (1)      (2)     (3)    →10倍   →10倍    →10倍 これって数字に置き換えると   1     10     100     1000 でやはり、それそれぞれの大きさは 右に行くと10倍、左に行くと1/10になりますね。 ★では、もっと小さい指数だとどうなるでしょう。   10^-2  10^-1   10^0      10      10^2     10^3 この指数だけに注目すると   (-2)    (-1)    (0)      (1)       (2)      (3)    →10倍   →10倍  →10倍   →10倍    →10倍 これって数字に置き換えると   1/100   1/10   0       10      100      1000 でやはり、それそれぞれの大きさは 右に行くと10倍、左に行くと1/10になっています。 分母だけを乗数で表すと   1/10^2  1/10^1  0       10      100      1000 *言い換えると、負の指数は、その数の乗数の逆数としても表せるということです。 ★指数には次の関係が成り立ちます。これも確認しておきましょう。 1. a^x × a^y = a^{x+y} 2. a^x ÷ a^y = a^{x-y} 3. (a^x )^y =a^{xy} 4. a^0 =1  ただしa(a a≠ 0)  掛け算・割り算が足し算・引き算に置き換えてできるという、すばらしい性質を持つ指数です。

  • banakona
  • ベストアンサー率45% (222/489)
回答No.5

#4です。 すみません。ミスがありました。最初の方にある > 0.2^(-5)=1/((0.2)^2) は間違いで、正しくは  0.2^(-5)=1/((0.2)^5) です。

  • DIooggooID
  • ベストアンサー率27% (1730/6405)
回答No.2
  • ozunu
  • ベストアンサー率14% (240/1644)
回答No.1

3^-1=1/3 3^0.5=√3 であることは判っている上で、と言うことですか。

関連するQ&A