• 締切済み

ベクトルと平面図形

三角形OABにおいて、辺OAを 1 : s ( >0) に内分する点をP, 辺OB を 1 : t ( >0) に内分する点を Q とする。線分BP と AQ の交点を R とする。 (1)OR ベクトルを a ベクトル = OA ベクトル , b ベクトル = OB ベクトル s , t を用いて表せ。 (2)線分 OR が角 AOB を2等分するとき、 s : t を | a ベクトル | , | b ベクトル | を用いて表せ。 という問題なのですが、(1)は理解できて、 OR ベクトル = t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) となるのですが、(2)の解答は次のようになっています。 (解答)「 直線 OR と 辺 AB との交点を D とする。 このとき、 k を実数として、OD ベクトル = kOR ベクトル とおける。 よって OD ベクトル = k { t * a ベクトル / ( st + s + t ) + s * b ベクトル / ( st + s + t ) } 点 D は辺 AB 上の点であるから kt / (st + s + t)+ ks / (st + s + t)= 1 ゆえに k = (st + s + t)/ (s + t) よって OD ベクトル = t * a ベクトル / (s+t)+s * b ベクトル / (s+t) したがって AD : DB = s / (s + t) : t / (s + t)= s : t ・・・(3) また、線分 OD が角 AOB を2等分することから AD : DB = OA : OB = |aベクトル| : |bベクトル| ・・・(4) (3)、(4)から s : t = |aベクトル| : |bベクトル| 」 となっているのですが、 自分の解答では 「 直線 OR と 辺 AB との交点を D とする。  線分 OD は角 AOB の二等分線であるから、 OA : OB= AD : DB すなわち 1 + s : 1 + t = |aベクトル|:|bベクトル| よって、s : t = |aベクトル|:|bベクトル| 」 という解答になりました。なにか間違っているような気もするんですが、いまいち何が間違っているのかわかりません。どなたかわかる方ご教授願えませんでしょうか?

みんなの回答

noname#75273
noname#75273
回答No.1

>> すなわち 1 + s : 1 + t = |a↑|:|b↑| ここで、OA : OB = 1 + s : 1 + t としているのが間違いです。 1 + s : 1 + t の「1 + s」、「1 + t」は比です。長さではありません。 また、後半の >> 1 + s : 1 + t = s : t も間違いです。 例をあげれば、明らかですが、 5 : 4 = 5 - 1 : 4 - 1 = 4 : 3 成立する式は、OA : OB = AD : BD = |a↑|:|b↑|までです。

mashimaro1
質問者

お礼

自分の間違えがわかりました。ご丁寧にありがとうございました。