- ベストアンサー
格子点
x,y,zを整数とするとき、xy平面上の点(x,y)を2次元格子点, xyz空間内の点(x,y,z)を3次元格子点という。また、m,nを0以上の整数とする。 (1)x≧0,y≧0かつ(1/3)x+(1/5)y≦mを満たす2次元格子点(x,y)の 総数を求めよ。 (2)x≧0,y≧0,z≧0かつ(1/3)x+(1/5)y+z≦nを満たす3次元格子点 (x,y,z)の総数を求めよ。 という問題でわからないところがあるので教えてください。 まず(1)では、長方形を作ってそこから格子点の数を求めようしました。すると、(1/3)x+(1/5)y≦mがx軸と交わるのは(3m,0)で y軸と交わるのは(0,5m)となりました。 4点(0,0),(3m,0),(3m,5m),(0,5m)を頂点とする長方形上の格子点の 個数は(3m+1)(5m+1) ここから分からないんですが、(1/3)x+(1/5)y=m(0≦x≦3m)上の格子点の個数はどのように求めればいいんでしょうか? y=0のときは(3m,0)なりますがy=1のときは分数になり格子点には 数えられません。代入していくとy=5のとき(3m,5)となりました… これはnを用いてどのように表すことができますか? また、(2)は上の方法が使えないので困っています。 どなたか教えてくださるとうれしいです。 説明下手ですみません>< ではよろしくおねがいします!
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- Ishiwara
- ベストアンサー率24% (462/1914)
回答No.2