締切済み 不定積分 2008/05/11 15:27 3∫1/u(u^2 + 1)du は 3log|u| - 3*arctan(u) + C になりますでしょうか。 もし間違っていましたら、途中経過を教えていただけないでしょうか。 みんなの回答 (2) 専門家の回答 みんなの回答 info22 ベストアンサー率55% (2225/4034) 2008/05/11 17:26 回答No.2 間違いです。 部分分数展開すれば積分できます。 3/{u(u^2 + 1)}=(3/u) - 3u/(u^2 + 1) 質問者 お礼 2008/05/11 20:04 ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 debut ベストアンサー率56% (913/1604) 2008/05/11 16:25 回答No.1 3log|u| - 3*arctan(u) + Cを微分してみればわかります。 微分すると 3/u-3/(u^2+1)={3(u^2+1)-3u}/u(u^2+1)=3(u^2-u+1)/u(u^2+1) で3*1/u(u^2+1)になりません。 1/u(u^2+1)=1/u-u/(u^2+1) =1/u-(1/2){2u/(u^2+1)} =1/u-(1/2){(u^2+1)'/(u^2+1)} とできるので、logだけでできます。 質問者 お礼 2008/05/11 20:03 ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 不定積分の問題です ∫du/{u√(c-2u)} = (1/√c)log[{√c-√(c-2u)}/{√c+√(c-2u)}] というものなんですが経過がわかりません。すみませんがどなたか教えていただけませんでしょうか。お願いします。 不定積分 何度計算してもめぼしい値が出ないのですが、間違いを指摘して頂けたら幸いです。 (1)∫1/coshx dx t = coshxと置くと 与式 = ∫1/t dx dt/dx = -sinhx dx = dt/-sinhx 与式 = ∫1/t dt/-sinhx = (log t) / -sinhx = (log cosx) / -sinhx (2) ∫xlog(1 + x) dx = (x^2) log(1 + x)/2 - 1/2∫(x^2)/(1 + x) dx - 1/2∫(x^2)/(1 + x) dxに着目する、 x + 1 = u , dx = du - 1/2∫(u - 1)^2/u du = - 1/2∫(u - 1) du = - 1/2(u^2/2 - u) = - (x^2 - 2x-1)/4 -(x - 1)/2 与式 = 1/2 {(x^2) log(1 + x) - (x^2 - 2x-1)/2 -(x - 1)} 初歩的かもしれませんが、宜しくお願い致します。 不定積分 すみませんがどなたか詳しく噛み砕いて教えてください。 ∫x/√1-x^2 dx なのですが解は -√1-x^2 + cになるらしいのですが -1/2∫1/√u du でなぜ -√u + C になるのかわかりません。すみませんがよろしくお願いいたします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 不定積分ができません。 ある数学の参考書に次のような記述があります。 √(1+U^2)の不定積分は U = (E^t - E^(-t))/2 と置いて置換積分法を使うのがもっとも賢明です。 そのとき、積分の根号の中は完全平方式となり、結果は ∫√(1+U^2)du = ( U√(1+U^2) + log(U + √(1+U^2)) )/2 になります。 とありますが、この答えを導くことが出来ません。(根号の中が完全平方式になるのは解ります。) わかりやすく解説していただけないでしょうか。 数式の表現が拙劣でわかりにくいかと思いますが、よろしくお願いします。 積分がわかりません ∫du/{e^(-u) + 1}=∫dt/t が u + log{1+e^(-u)}=logt + C となる過程がよくわかりません。 お手数おかけしますが、お願いします。 積分について x・dy/dx+y+y^2/xを 変数分離形になおせという問題ですが、 du/2u+u^2=-dx/xとなるのはわかりました。 次にする積分ですが右辺の-dx/xは-log|x|になるのは分かるんですが 左辺が1/2(log|u|-log|u+2|)になるのが分かりません。 さらにlog|x^2u(u+2)|=2C になる過程が分かりません。 よろしくお願いいたします。 不定積分 次の問題なんですが、一問目は答えが出ていて二問目が分かりません。 またどちらとも途中のしきが立てられないので、どなたかご指南お願いします。 (1)∫(1/x^3+1)dx この問題ではx^3+1=(x+1)(x^2-x+1)で分数分解して、両辺にx^3を掛けて係数比較するんですが、そのあとの積分の計算ができません。。。 答えは1/6log(x+1)^2/x^2-x+1 + 1/√3Arctan((2x-1)/√3)らしいんですが。。。 (2)∫{1/(1+x^3)^4/3}dx こちらの問題は解き方がわかりません。 不定積分 ∫dx/√(4x-x^2)を求めよという問題を解いてみたのですが、模範解答のsin^(-1)(x-2)/2と合いません。以下に私の解答を記しますので、間違いを指摘していただけると幸いです。 t=√(4x-x^2)とおく。 t=√(4x-x^2)⇒t^2=4x-x^2⇔(x-2)^2=4-t^2 ⇔x-2=±√(4-t^2)⇔x=2±√(4-t^2) 両辺をtで微分すると、dx=干tdt/√(4-t^2) (マイナスプラスの記号が見つからなかったので干で代用させていただきます) よって、 (与式)= ∫dx/√(4x-x^2)=干∫dt/√(4-t^2)=干∫dt/2√(1-(t/2)^2) u=t/2とおく。両辺を微分すると、dt=2du ∴(与式)=干∫du/√(1-u^2)=干sin^(-1)u +C=干sin^(-1)√(4x-x^2)/2 +C この積分の求め方を教えて下さい。お願いします。 こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。 積分 ∫(2x)/(2x - 1) ^2 dx 問題) By using the substitution u = 2x - 1 , or otherwise, find ∫(2x)/(2x - 1) ^2 dx これを私流に計算していくと ∫(2x)/(2x - 1) ^2 du/2 1/2 ∫ (u+1) (u^ -2) du 1/2 ∫ ( u ^ -1 + u ^ -2) du ここで途中計算の質問なのですがこれを積分すると 1/2[ u ^0 - (u ^ -1)] + c →1/2 [ - (u ^ -1)] + c となっていいのでしょうか? それとも 1/2 ∫ ( 1/u + u ^ -2) du となり 1/2 ( ln l u l - u ^ -1) + c と続いていくのでしょうか? 微分方程式の式変形について教えてください 微分方程式、 (1-1/u+2)du=1dx から e^u *(u+2)=Ce^x (C:定数)と参考書では式変形しているのですが、途中式がわかりません。 一応やってみたのは、 ∫1du-∫(1/u+2)du=∫1dx u-log|u+2|=x+C ここからどのようにlogを消していいのかわかりません。教えてください 積分計算 ∫[0→1]1/√(1+u^2 ) du=log(1+√2) となるのはなぜですか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分計算 積分の計算をしたのですが 解答と違うのでどこが違うか指摘をお願いします 問題 ∫dx/√((x-1)^2-1) (範囲は2から4)・・(1) 解答では (1)=log|x-1+√(x(x-2))| となるので log|x-1+√(x(x-2))|=log(3+2√2) そして自分の回答 x-1=1/costとおいて tの範囲が0からα(ただしcosα=1/3 sinα=2√2/3) dx=(tant/cost)dt (x-1)^2-1=(1/cos^2t)-1=tan^2t よって ∫(1/tant)(tant/cost)dt=∫(1/cost)dt=∫(cost/(1-sin^2t))dt ここで sint=uとして uの範囲が0から2√2/3 du=costdt ∫(1/1-u^2)du=1/2∫(1/1+u^2)+(1/1-u^2)du =1/2log(1+u)(1-u) =1/2log1/9 となってしまします よろしくお願いします 積分について聞きたいことがあります。 ∫√(2x-1) dx という問題なんですが、僕がやると二つ答えが出てしまいます。どこが間違ってるのか、教えてください。 ひとつめは、 ∫√(2x-1) dx = 2*2/3*(2x-1)^3/2 + c = 4/3*(2x-1)^3/2 + c となり、 ふたつめは、 ∫√(2x-1) dx u = 2x-1 とおいて、 du = 2*dx dx = du/2 ∫√(2x-1) dx = ∫1/2*√u du = 1/3*u^3/2 + c = 1/3*(2x-1)^3/2 + c となります。 ふたつめは置換積分でやりました。 どっちが正しいのか、というのと、なぜもう一方のやり方でやってはいけないのか、という理由を教えてください。 不定積分 ∫1/x√(1-x^2)dx の問題で、解答が 変数変換t=√(1-x^2)を用いて、 (1/2)log|(1-√(1-x^2))/(1+√(1+x^2))|+C となっているのですが、いまいち理解できません。途中の計算式を知りたいです。よろしくお願いします。 定積分の問題について 皆さんよろしくお願いいたします。 問題は以下を証明せよです。 ∫W(u)du=π^2/2 ただしW(u)=log( coth(|u|ln(10)/2 )、積分範囲-∞<u<∞ (※ここでlogは10を低とする常用対数、lnはeを低とする自然対数) ここでW(u)は|u|があることから、またグラフの形状から偶関数であることがわかったので、 与式を次のようにしました。 ∫[-∞<u<∞]W(u)du=2×∫[0≦u<∞]log( coth(uln(10)/2 )du この次に変数uは2つの関数の中に入っているので、t=coth(|u|ln(10)/2と置いて、置換積分を試みようとしました。 ところが、置換積分て積分範囲が∞の時も成立するのか分からず四苦八苦しております。 どなたか、ご存知の方いらっしゃいましたら、ご教示いただきたくお願いいたします。 積分の計算について ある積分を計算するときに、式の途中で、x=log(u/v) ,y=log((1-v)/(1-u)) と変数の変換をする必要があり、何度か計算を試みたのですが、なかなか上手くいきません。 解答には、このように変数変換したとき、(du/u)(dv/(1-v))= dxdy/(e^(x+y)-1)となると書かれているのですが、上の変数変換の関係式から、どうすれば下の関係式を導くことができますか? 微分y*(dy/dx)+x-2y = 0について 微分方程式について教えて下さい。 とある問題集があり、そこには最初の式と途中経過があるのですが 自分が試したところではどうしても結果が一致しませんでした。 問題は以下の通りです。 式中の y/x = u として進めていきます。 y*(dy/dx)+x-2y = 0 (1) -> 1+u(u+x*(du/dx)) = 2u (2) -> ∫((u/(u-1)^2)du = ∫(-1/x)dx (3) -> (u-1)x=C*e^(1/(u-1)) (4) (1)が最初の方程式、(4)が結果です。 自分でやると(2)のところでは 1+u(dy/dx) = 2u になります。 (2)から(3)への計算は出来ますが(3)から(4)では log(u-1)+u = -log(x)+C → log(u-1)x = C-u になり先に進めなくなります。 きっとどこかで勘違いしているのだと思うのですが、 何日かおいてみても間違いが分かりません。 どなたか、教えていただけないでしょうか。 よろしくお願いします。 ガンマ関数を用いて定積分 ガンマ関数を用いて ∫u^4e^-u^2 du を解けという問題中で u=x^2 とし、du=1/2√xと設定されています。そこで途中の展開された式が 1/2 ∫x^(2/3)e^-x dx となっているのですがなぜここにたどり着いたのかがわかりません。展開途中の式を教えていただけますでしょうか 不定積分についてで再度質問… 明日定期テストがあり、この問題をどうしても解きたいのですが、分かりませんm(__)m (1)∫2u/(u^4+2u^2+5)du (2)∫dt/√(t^2+t+1) どうか、よろしくお願いします(^^ゞ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。