締切済み 可積分について教えてください 2007/05/04 09:17 ずばり,可積分,もしくは"p乗可積分"であるとは どのような意味なのですか? どうかよろしくお願いいたします みんなの回答 (2) 専門家の回答 みんなの回答 kabaokaba ベストアンサー率51% (724/1416) 2007/05/04 10:32 回答No.2 丸投げだと指摘されたってことでしょう. 実際,そのようにも思えます. 実際「p乗可積分」なんて言葉がでてくる文献を 読むなら,定義がそれにでてくるか, 定義は理解してて当然というような用語です. #小平の消滅定理とかで,たまに代数幾何や #複素解析の文脈でもでてきますけど, #やっぱり,そういうのの読者は定義を知ってるだろうし #定義そのものもその文献にでてることが多い そうでないならもう少し背景を説明するほうが 話が滑らかになるでしょう. ルベーク積分はご存知ですか? X上の可測関数fがp乗可積分であるとは |f|^{p} のX上の積分が有限であることをいいます ∫_X |f|^{p} dμ < ∞ #μは測度 p=1のときを「可積分」といいます. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 masuda_takao ベストアンサー率44% (47/105) 2007/05/04 09:54 回答No.1 下記 URL の No. 1 さんのコメントの後半をご参照下さい。 http://oshiete1.goo.ne.jp/qa2971293.html 質問者 補足 2007/05/04 10:06 時間=道のり÷速さ 二人の歩いた道のりは同じ(当たり前ですね)→Xとおく 時間を求める式を作りたいのなら時間も式で必要でしょう→Yとおく あとは二人それぞれで上に書いた 時間=道のり÷速さ の式を立てましょう。 ちなみに ここでは丸投げは禁止です なので私も答えを書く気はありません 間違っていてもいいので、自分なりの考え方を書くようにしてください と書いてありますが? よく意味がわかりません 可積分のことでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 可積分の意味 数学で可積分という言葉を調べると、シンプレクティック多様体とかソリトンとかカオス・フラクタルとかすぐに高等的な数学の情報に行きつきます。一方で初等的な意味では積分とは何かというと定積分では区間を短冊に区切って面積を足していく(∑)ということになり、おそらく短冊の幅を無限小に漸近させたものが積分ということになるんだろうと思います。結局は微分積分学とか解析学の冒頭に出てくる極限における収束ということでしょうか。それができるのが可積分、できないのが不可積分ということなのでしょうか。高等的な数学のあの理論は可・不可というジャッジは初等的な極限と同じということになるのでしょうか。どういうことなのか大まかにマッピングできるようになりたいと思ったのでお尋ねしました。三角関数のサイン・コサインは可積分でしょうか。 よろしくお願いします。 2乗可積分関数とは何でしょうか? フーリエ関数などを学んでいる入門者です。 2乗可積分関数を満たす関数がどのような意味を持つのか教えていただきたいです。 2乗可積分関数 ∫(0から2πまで)|f(x)|^2 < ∞ とされています。 ∫(0から2πまで)|f(x)| ならば、xが0~2πまでの面積を表わす のように答えていただけますと非常に助かります。 よろしくお願いします。 可積分について f(x) (a≦x≦b)が可積分のとき |∫(a→b)f(x)dx|≦∫(a→b)|f(x)|dxを出来るだけ詳しく示して下さい。 ダルブーの定理辺りの知識はあります。 特に|f(x)|が可積分である事の証明がよく分かりません。 どうかよろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 導関数の可積分性 fをC^2級の函数とします。つまり二階導関数まで存在してそれは連続。 さらにfとf"はともに可積分(ルベーグ可積分)とします。 このときf'も可積分になることは示されるものなのでしょうか? 容易に出来る気もするのですが、混乱してできません。 もし万が一反例があるのなら、それを教えて頂きたいです。 あとこれだけの主張でも証明できるような気はするのですが、 fおよび、f"がともに有界(したがってf'も有界になりますが) という付加条件をつける必要があるのならそうしていただけるとありがたいです。 とにかくf'の可積分性がどうしてもいいたいです。 可積分だが二乗可積分じゃない連続関数 R上の1変数偶関数(この条件はそんなに本質的じゃないと思いますが)で、可積分であるが、二乗可積分にはならない連続関数の例が知りたいです。自分でも作れたような気がするのですが、やたらと複雑になので、出来れば簡単な初等関数程度の例があると嬉しいのですが。 フビニの定理における可積分性について ガンマ関数の正則性を示す際、 積分区間を0→1区間と1→∞区間に分け 例えば1→∞については 複素関数列f_n(z)=∫(1→n)e^(-t)t^(z-1)dtなどとして モレラの定理を用いてf_n(z)の正則性を示し、 さらにf_n(z)の一様収束性からガンマ関数の正則性が導かれますが、 この、モレラの定理を使う段階で、積分の順序交換を行っています。 積分の順序交換については フビニの定理からその正当性が保証されるようですが、 フビニの定理の仮定には可積分性が必要です。 e^(-t)t^(z-1)の、ジョルダン閉曲線C×[1,n]上での可積分性はどのように示すのでしょうか? 各f_nについては、 その積分区間[1,n]上と、Re(z)>0内の任意の固定されたジョルダン閉曲線C上で 被積分関数e^(-t)t^(z-1)は有界であるので 可積分であるという認識では間違いでしょうか? 様々な書籍を当っては見ましたが、積分論には疎く、積分論の専門書では理解しきれず、 簡単な本では、肝心の疑問が解決しないという状態です。 フビニの定理を使って累次積分の順序交換をしたいがために可積分性を示したいのに、 可積分性を示すために累次積分で計算している本もありましたがどうにもおかしく感じてしまいます。 非積分関数の絶対値を考えれば、フビニの定理によらず順序交換ができるのでしょうか? 非負値関数に対しては何か定理があったような気がしますが、調べても納得行く解説が得られませんでした。 無知でお恥ずかしい限りですが 考えれば考えるほどわからなくなってきてしまったので、 できるだけ丁寧な回答をよろしくおねがいします。 ☆積分積分積分積分積分☆ ☆積分積分積分積分積分☆ この問題をできるだけ分かりやすく丁寧に教えて下さい、お願いします。 次の条件を満たすXの三次の多項式P(X)を求めよ。 (1)任意の二次以下の多項式Q(X)に対し、∫〈1、ー1〉P(X)Q(X)dX=0 (2)P(1)=1 可積分関数の上界について [0、1]上のルベーグ可積分関数fに対して、 |f(x)|≦M、a.e x となるような正数Mは存在しますか? 可積分ということは端のほうではほぼ0? 「 ∫_R |f(x)| dx < ∞のとき(可積分のとき) lim_{B->∞} ∫_{|x|>B} |f(x)| dx -> 0 が成り立つ 」 の証明がわかりません。 否定をして、適当なε>0が存在して、任意のδ>0に対して、 適当なB>δが存在して、∫_{|x|>B} ≧ εが成り立つ と仮定して矛盾を導こうと考えていたのですが、 うまくいきません。 δのとり方をうまくしたらできると思うのですが、 教えて頂けないでしょうか? 周回積分と閉路積分って同じ意味ですか? 周回積分と閉路積分って同じ意味ですか? どういう意味ですか? 積分って掛け算のことですよね? 掛け算をどうすることを周回積分、閉路積分と言うのでしょうか? 積分 次の積分ができません。 どなたか教えてください。 f(x)=(1/2π)∫[-∞~∞] (i/p){exp(-ipb)-exp(-ipa)}dp expにオイラーの公式を使うと cos(pb)/p などが出てきて積分できません。 dxの無い、定積分。 定積分について、最後にdxが付いていない式の意味は単なる足し算になるのでしょうか。 具体的には、 Y=∫[i=1→2]∫[j=1→2]f(x) f(x)=Pij のとき、 Y=P11+P12+P21+P22 となるのかという事です。 基本的なことかもしれませんが、お詳しい方よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分因子について 知恵袋でも質問したのですが、回答がこなかったのでこちらで質問します。 答えられる範囲でいいんで回答お願いします。 微分方程式の積分因子による解放について (x + (x^2 + y^2)x^3)dx + ydy = 0という微分方程式の積分因子を用いた解法について教えてください。 積分因子については、exp((1/2)x^4)ともとまったのですが、その後の計算がよくわかりません。 積分因子をかけることによって、完全微分方程式となって解がはじめて得られるようになると思うので、 積分因子をかけました。 exp((1/2)x^4)(x+(x^2+y^2)x^3)dx+exp((1/2)x^4)ydy となったのですが、ここから分かりません。 詳しく回答教えていただけるとありがたいです。 それから、完全微分方程式という用語についてなのですが、この完全ってどういう意味なんでしょうか? 完全というのは、解が得られるという意味なのでしょうか? 最初の式ってのは、解が得られないのでしょうか? ですが、積分因子を用いることによって解が得られるのでしょうか? よく完全微分方程式は、du=pdx+qdyみたいな形で示されますが、よくこの式の意味するところがわかりません。 u(x,y)という二つの変数をもった関数があったとする。 その関数をxについて偏微分したものが、pを表しているのでしょうか? pはdu(x,y)/dxというのが省略されてpとかいているだけなのでしょうか? 多変数関数、偏微分についてもくわしく勉強したことがなく、いきなり微分方程式を独学で勉強しているので、謝った考えた方をしている可能性もあり、きちんと理解しておきたいので、よろしくお願いします。 できれば詳しく解説してくださるとありがたいです 積分3 1 / [ x^p ( x^2 + 1 )^2 ]の積分のやり方を教えてください。 【定積分】全9問解き方教えて下さい※1問のみでも可 定積分の問題が解き方がわかりません。 教科書には答えだけがのっており、 数学が苦手な私は全然解き方が思いつきません。 【∫↑ ~ ∫↓】…定積分の範囲 (1) 【2π~0】 ∫cos^2x sin^2x dx 答え π/4 (2)【π/2~0】 ∫sin^4x dx 答え 3π/16 (3)【π~0】 ∫x^2 sin^2 dx 答え π(2π^2 -3)/12 (4)【π~0】 ∫√(1+cosx) dx 答え 2√2 (5)【2~0】 ∫x^2√(2x-x^2) dx 答え 5π/8 (6)【π/2~0】 ∫1/(4+5sinx) dx 答え log2/3 (7)【π/4~0】 ∫1/(1+2sin^2x) dx 答え π/3√3 (8)【2~1】 ∫1/√(x^2 -1) dx 答え log(2+√3) (9)【2~0】 ∫1/√(x(2-x)) dx 答え π 答えは解くときの参考にしてもらえたらと思います。 全部は解けないけど何問かはわかる、という方も 解答をお願いします。 初めての質問で至らない点もあるかと思いますが よろしくお願いします。 可積分について ∫|f(x,y)|dx<∞ (積分区間はR全体) が成り立てば |f(x,y)|≦g(x)かつ∫g(x)dx<∞を満たすg(x)が存在する これはあっていますでしょうか? どなたか解説をお願い致します。 2乗可積分の収束性について 当方物理科の学生なのですが,フーリエ変換の問題を解いていた時気になった点があります.どこにでも書いてありそうかなとネットを探してみたのですが,探し方が悪いのか見つかりませんでした. 命題:有限区間を除いて何回でも微分可能な2乗可積分関数は0に収束する ことの証明を探しています.物理なのでそこまで気にすることもなく受け入れていたような内容なのですが,ふと数学的/厳密な証明が気になりました. 証明そのものや説明でなくともこの本に載っているよや,ウェブのソースを提示していただけるだけでも結構です. よろしくお願いします. 積分の問題が分かりません 以下の広義積分が収束するか判定せよ。ただしその値は求めなくてよい。 1. x^p*(1-x)^q を0から1までxで積分 p,qは0以下の実数でp,qの値で場合分け 2. cos(x)/x を0から∞まで積分 という問題です。助けてください リーマン積分について リーマン積分の積分可能性について悩んでいます。 自分の考えを整理したいので、以下の2つの質問に回答していただけると助かります。 (1)1/xは=0で不連続なのに、何故[0,1]で定積分可能なのですか? (2)f(x)が[a,b]で2乗可積分可能でも、f(x)が[a,b]のすべての点で連続とは限らない これは正しいですか?また具体的なf(x)にはどのようなものがありますか? どなたかご回答、解説をよろしくお願い致します。 ガウスの積分について 閉曲面S上の任意の位置ベクトルP=[x,y,z]とそのノルムp=llPll について∬[領域S](P/p^3)・ndsの式が成り立つ。ここでガウスの発散定理より∬[領域S](P/p^3)・nds=∫∬[S内の領域V]div(P/p^3)dVと変形できる。 『閉曲面SがOを含んでも,∬[領域S](P/p^3)・ndsの面積分は外側のみの積分だから被積分関数の分母が0になることはない。しかし、∫∬[S内の領域V]div(P/p^3)dVの式については体積分でありSの中身の積分になるから、被積分関数の分母が0になる場合が生じる。よって、ガウスの発散定理を用いることができるのは、閉曲面Sが原点Oを含まないときのみである。』 質問ですが、『』の文章の説明がいまいち分かりません。∬[領域S](P/p^3)・nds=∫∬[S内の領域V]div(P/p^3)dVの式の左辺の面積分だと、なぜp=0にならないのか?逆に右辺の体積分だとp=0になりうるのか詳しく教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
時間=道のり÷速さ 二人の歩いた道のりは同じ(当たり前ですね)→Xとおく 時間を求める式を作りたいのなら時間も式で必要でしょう→Yとおく あとは二人それぞれで上に書いた 時間=道のり÷速さ の式を立てましょう。 ちなみに ここでは丸投げは禁止です なので私も答えを書く気はありません 間違っていてもいいので、自分なりの考え方を書くようにしてください と書いてありますが? よく意味がわかりません 可積分のことでしょうか?