ベストアンサー 可積分について 2012/11/14 16:23 ∫|f(x,y)|dx<∞ (積分区間はR全体) が成り立てば |f(x,y)|≦g(x)かつ∫g(x)dx<∞を満たすg(x)が存在する これはあっていますでしょうか? どなたか解説をお願い致します。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2012/11/14 17:41 回答No.2 f(x,y) = y exp(-xx) なんかが反例かな。 通報する ありがとう 0 広告を見て他の回答を表示する(2) その他の回答 (2) Tacosan ベストアンサー率23% (3656/15482) 2012/11/14 17:46 回答No.3 あそっか, g の方は y が消えてるんだ. 気づかなかった. と勘違いしてたので, #1 は完全に無視してください. 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/11/14 16:38 回答No.1 何が疑問なのかが分からん. ど~見ても自明でしょ? 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ルベーグ積分の収束について 以下の定理について質問があります。 X∈Rとする。 可積分関数の列{f_n(x)}(n≧1)が Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx<∞ をみたせば Σ(n=1~+∞)|f_n(x)|も可積分で Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx=∫(積分区間はX)Σ(n=1~+∞)|f_n(x)|dx 以上の定理について、何故n≧1なのでしょうか? Σ(n=-∞~+∞)∫(積分区間はX)|f_n(x)|dx<∞ の場合は成り立たないのですか? どなたか詳しい解説をよろしくお願い致します・・・。 定積分と面積・・ 「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α) α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α) α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・ 教えてください!! 数学 積分 (1)F(x)が0≦x≦1で連続な関数である時、∫xF(sinx)dx=π/2∫F(sinx)dxが成立することを示し、 ∫xsinx/3+sinx^2・dxを求めよ。 積分区間はすべてπから0までです。 t=π-xと置くのか定石とか書いてありますが、なぜこういうことをするのですか? それと、成立することを示した後、なぜsinx/3+sinx^2をF(sinx)と置くのでしょうか? これはそうしないと解けないのですか? 詳しくお願いします。 (2)∫|1-√2-2sinΘ^2-2√3sinΘcosΘ| 積分区間πから0を求めよ。 絶対値の中を2cos(2Θ+3π)-√2にして、それで(2Θ+3π)をtとかおいて積分区間を7π/3, π/3まではわかるんですが、それから解説だと、9π/4からπ/4までを積分すればいいとなっていますが、なぜでしょうか? 周期関数はどこから区間を始めても、定積分の値は等しいとなっていますが、なぜですか? 周期関数とはsin,cosだけでで表されてるものだけをいうのでしょうか? それ以外に周期的な関数というのは存在するでしょうか? 解説お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 不定積分についてです (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m 2重積分の積分区間 次の問題の積分区間の取り方がわかりません。 領域D={(x,y)|0≦x≦1,0≦y≦x}のとき、 f(x,y)=x+2yの重積分 ∬Df(x,y)dxdy を求めよ。 yで積分してからxで積分するやり方だと、 前者の積分区間が0→x 後者の積分区間が0→1 となり、これはまあなんとなくわかるのですが、 xで積分してからyで積分するやり方だと、 前者の積分区間がy→1 後者の積分区間が0→1 となるようなのですが、どうしてこうなるのでしょうか。 この積分区間の取り方がよくわからないゆえ、 他の問題も全然解けません。 どなたか解説をお願いします。 偏微分、部分積分 部分積分の公式として、 ∫f'(x)g(x)dx = f(x)g(x) - ∫f(x)g'(x)dx というのがありますが、このダッシュは偏微分を表しているのでしょうか? 勿論1変数なら偏微分もへったくれもないと思うのですが、今、 ∫∂f(x,y)/∂x g(x,y)dx という積分をしたいと思っているのですが、これを部分積分して、 f(x,y)g(x,y)-∫∂g(x,y)/∂x f(x,y)dx とすることは可能なのでしょうか? 広義積分の問題を教えてください。 fとgを区間I=(0,∞)で定義された連続非負関数で、この区間で広義積分可能であるとします。 さらに、 f(x)→0 (x→0) xg(x)→0 (x→∞) を満たしているとき、 lim[n→∞] n∫f(x)g(nx)dx = 0 (積分区間はI) が成り立つことを示したいです。 以下のように積分区間を0から1,1から∞にわけて、 それぞれ評価しようとしましたがうまくいきません。 具体的には、 J=n∫f(x)g(nx)dx とおいて、 J= n∫f(x)g(nx)dx + n∫f(x)g(nx)dx (最初の項を(1) 2つめの項を(2)として) (1)の積分区間は0~1 (2)の積分区間は1~∞ (1)において、g(nx)が非負なので、平均値の定理から、 (1)=nf(Cn)∫g(nx)dx となるような、nに依存する値 Cn∈[0,1]が存在。 nx=tと置換すれば、 (1)=f(Cn)∫g(t)dt (積分区間は0からnに変化) というキレイな形になり、 ∫g(t)dt は、gが広義積分可能なことから、有限値に収束。 このままf(Cn)が0に収束してくれれば良いんですが、 Cnは [0,1]上 特に性質なくいろんなところをとりえます。 だから、Cnが単調減少して、仮定の条件をつかって クリア!みたいなことにはならないのです。 根本的に方針が違うのだと思うのですが、 どなたかヒントでもいいので教えてください。 畳み込み積分の積分区間の特定について 統計の参考書中に、畳み込み積分の解説がされており、確率変数X、Yが独立ならば f_XY(x,y)=f_X(x)・f_Y(y)と変形でき、 T=X+Yと新しい確率変数を定義した場合、Tの確率密度は f_T(t)=∫-∞→∞ f_X(x)f_Y(t-x) dx とあらわせる。 と書いてありました。 ここまではいいのですが次の例題で早くもわからなくなりました。 例題 ではX,Y独立でf_XY(x,y)に従うとき、 f_XY(x,y) = 1/9 (0≦x≦3,0≦y≦3) 0 (それ以外の(x,y)のとき) ここでT=X+Yによりあらたな確率変数Tを定義する。このときのTの確率密度f_T(t)を求めよ。 というところで、 独立より、∫0→3 f_X(x)dx = ∫0→3 f_Y(y)dy = 1を考慮に入れると、 f_X(x) = 1/3 となる。 ここまでは、全確率の関係と独立の関係から解釈はできたのですが、次の解説で 以上から積分区間は (i) 0≦t≦3のとき (ii) 3≦t≦6のとき と場合分けができる。 (i)のときは0≦x≦tとなり、 (ii)のときはt-3≦x≦3になる と書いてありましたがここの理解がまったくわかりません。 どうして積分区間が上記のことからi&iiの場合に分けられて、そしてそのときのxの区画までも表せるのでしょうか。 お恥ずかしいですがここの積分区間の理解ができていないので大変困っています。 ご指導お願い申し上げます。 可積分ということは端のほうではほぼ0? 「 ∫_R |f(x)| dx < ∞のとき(可積分のとき) lim_{B->∞} ∫_{|x|>B} |f(x)| dx -> 0 が成り立つ 」 の証明がわかりません。 否定をして、適当なε>0が存在して、任意のδ>0に対して、 適当なB>δが存在して、∫_{|x|>B} ≧ εが成り立つ と仮定して矛盾を導こうと考えていたのですが、 うまくいきません。 δのとり方をうまくしたらできると思うのですが、 教えて頂けないでしょうか? 部分積分の疑問 部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。 3次の定積分の問題です。 (1) ∫(x-α)(x-β)g(x) dxの定積分(区間:-1→1)が0となるときのα、βを求めよ。 ただし、g(x)は1次関数である。 (2) ∫f(x) dx = f(α)+f(β) (積分区間:-1→1)を証明せよ。 f(x)は3次関数である。 という問題です。 (1)はg(x)=ax+bとおいて計算してみたのですが、 a≠0よりα+β=0 b≠0のときα=1/√(3)、β=-1/√(3) またはα=-1/√(3)、β=1/√(3) というスッキリしない回答になってしまいました。 また、(2)を見据えた答えにならずよくわかりません。 途中計算も含めて御解答していただけると助かります。 よろしくお願いします。 可積分について f(x) (a≦x≦b)が可積分のとき |∫(a→b)f(x)dx|≦∫(a→b)|f(x)|dxを出来るだけ詳しく示して下さい。 ダルブーの定理辺りの知識はあります。 特に|f(x)|が可積分である事の証明がよく分かりません。 どうかよろしくお願いします。 n次元の積分計算 n次元の積分の計算です。 どなたか解説をお願い致します。 x,y∈R^N,t>0とします 積分区間を-∞~t^(-1/2)xとしたとき ∫exp(ーy^2)dy はどのように計算できるのでしょうか? 手ほどきよろしくお願い致します。 定積分における符号付き面積 前の質問に関連した質問です。 定積分の値が負になる時これを『符号付き面積』と呼ぶのでしょうか。 例えば∮(1→3)(-x^2)dx=-8となって負の値になります。 しかし教科書にa≦x≦bの範囲で、y=f(x)とx軸で挟まれる図形の面積はf(x)≦0の場合、y=f(x)はx軸の下側にあるので面積は∮の前にマイナスを付けてS=- ∮(a→b)f(x)dxと表されるとあります。 これを上のy=-x^2, (積分区間1~3)の例で試すと、S=-∮(1→3)(-x^2)dx=-(-8)=8となり正の値になります。 ここで混乱してしまったのですが、つまり定積分によって面積を求める場合は値は必ず正になりますが、普通に定積分する際には値が負の値をとる事もあり、これを『符号付き面積』とも呼ぶという事でしょうか。 一つ前の質問で挙げた、|∮(a→b)f(x)dx|≦∮(a→b)|f(x)|dxという不等式についてですが、左辺についてこのf(x)がプラスの区間とマイナスの区間を含む場合、この不等式においてはそれぞれの区間を普通に積分するという意味で、各区間の面積を求めて合計する訳ではないですよね。 もしそうなら、f(x)がマイナスの区間の面積も正の値で出てくるはずなので、両辺がイコールになると思うのですが。 自分の勘違いしている所もありそうですので、その場合ご指摘ください。 積分について A(有界集合)を含む長方形Rの取り方によらずに積分可能であることが決まり、また積分値も取り方によらずに一定である。 つまり、 R⊃Aでf(x,y)が積分可能とするとき、ほかの長方形R_1⊃Aをとるとき、R_1でのf(x,y)の積分可能性と∬_(R_1)f(x,y)dxdy=∬_(R)f(x,y)dxdy となることを示したいのですが、わかりません。 回答よろしくお願いします。 積分を別の変数で微分するときの解き方 F(y)=∫(x-y)p(x)dx (※積分範囲は0からy) と定義されるF(y)をyで微分する場合の計算過程について質問させてください。 もし積分範囲に変数yが指定されていなければ, F(y)=∫xp(x)dx - y∫p(x)dx と考えて, yで微分すれば, F’(y)= -∫p(x)dx ・・・式(1) と解けるかと思います。 しかし、積分範囲にyがある場合、積分部分自体もyの変数になっているので、同じように解いてはいけないと私は考えていまして P'(t)=p(t) R'(t)=P(t) とおいて, F(y)をP(t)とR(t)を用いて表現したあとにyで微分して求めました。 結果、式(1)と同じようになりました。 このような場合、積分範囲にyがある場合でも、定数として考えて微分してしまっていいのでしょうか? 質問の意図が分かりづらいかもしれませんが、上手く説明出来ません。 すいませんが、よろしくお願いします。 逆関数の置換積分の原理をもう少し深く理解したいです 逆関数の置換積分が根本的に分からないのです。(置換積分の考え方についての質問です。) 「πx^2sin(πx^2)の1≦x≦0までの区間とx軸に囲まれた平面をy軸周りに回転させて出来る立体の体積を求めよ」という問題でそれに気づかされました。 有名問題そうなのでグラフの様子や答え自体は周知という前提で話を進めます。 この問題のある解き方ではまず0≦x≦1なる極点のx座標をα(y座標をy1)とします。 そしてαを境目として、問題の関数を2つの逆関数x=g1(y)(0≦x≦α)、x=g2(y)(α≦x≦1)で表現すると、その回転体の体積は∫[0,y1]π(g2(y))^2dy-∫[0,y1]π(g1(y))^2dyとなり この式についてy=f(x)とおくと∫[1,α]πx^2f'(x)dx-∫[0,α]πx^2f'(x)dxとなるということだったと思います。あとはごちゃごちゃ計算すれば値πが求まるわけです。 y=f(x)と置いた後の積分の式はdyの部分がf'(x)dxになっていて、これは置換積分の公式y=f(x)dx⇔y=f(g(t))dx/dt*dtについて、tをyと見て適用した結果が素直に反映されているように見えます。 疑問なのはg1,2(x)^2がx^2になっているところで、なんでこうなるのかちゃんとは理解できていないようなのです。 x=g(y)のような式をy=f(x)でおくのだからx=g(f(x))ということになるでしょう。これは公式のf(g(t))に対応すると思います。公式のこの部分は、tで置換積分すると決めたらf(x)の変数xが全てtで表されるようにしろという意味で私は理解しています。 たとえばx(x-2)^3のような式を積分するならt=x-2と置くでしょうが、そのとき式中の(x-2)は宣言した通り一文字のtで置き換えるだけですしt=x-2はxについて解けますからそれを代入することによって式はtだけの式で表されるということになります。 ですがこれと違って、y=f(x)でおくという場合代入という考え方で式の同値変形ができるわけではありませんよね。公式を適用する中でg(f(x))=xというのはどうやって導出するものなのかが分からないのです。 考えてみたら、逆関数として表現したものを逆関数で置きなおすのだからx=g(y)という等式で結ばれたxでそれは表現されるというのは「なんとなく」そんな気がしますし、これに限っては「逆関数の逆関数はx」と暗記することで済むと思います。 しかし数学なのだから考え方が正しければ途中過程によらず正しい答えにたどり着くという前提のもとで、置換積分の際の置き方というのは自由なはずですから、たとえばy=f(x)ではなくy=2f(x)として置換積分したらどういう流れで元の結果に行き着くだろうと考えたのですが、全くわからなくなりました。 y=2f(x)ですからdy=2'f(x)dxなのは当然でしょう。するとg(2f(x))は2'f(x)dyの2が打ち消されるような式でなければならないわけです。置き換える前の式は∫[0,y1]π(g2(y))^2dyのように式が二乗されていますから求める式はg(2f(x))はx/√(2)ということになる、のでしょうか?いよいよ分からなくなるわけです。x/√2という式でたとえ合っていたとしても、また別の、答えがあらかじめわかっておらず、こうしたつじつま合わせが使えない別の問題は解くことができないのです。 長くなりましたが、なぜ最初の問題について積分の中身をg(y)^2がx^2となるのか、y=2f(x)のように置いた場合にも応用が利くような考え方でご解説いただきたいと思います。よろしくお願いします。 累次積分の順序変更 累次積分の積分順序の変更 累次積分 ∫(1→2)dy∫(y-1→y+1)f(x、y)dx の積分順序を変えよ 1≦y≦2 y-1≦x≦y+1 だから。 xy平面にグラフを書く。 すると平行四辺形がかけました。 ↑の累次積分ではxの積分→yの積分の順序なので yの積分→xの積分に順序を変えます。 以上からグラフの形より積分を3つに分けて {∫(0→1)dx∫(1→x+1)f(x、y)dy}+{∫(1→2)dx∫(1→2)f(x、y)dy} +{∫(2→3)dx∫(x-1→2)f(x、y)dy} このようになりました。 わざわざ3つにわける必要はなかったでしょうか? そもそもやり方はあってるのでしょうか。。。 どなたか教えていただけないでしょうか! 定積分と不等式 不等式 1/2<∫(1→2)dx/x<1を証明せよ。 という問題の最初の部分で、区間[1,2]で1/2≦1/x≦1、区間(1,2)で1/2<1/x<1ゆえに・・・と証明は続くのですが、自分は積分区間はxに含まれると思うので、1≦x≦2から、区間[1,2]で1/2≦1/x≦1まで、はわかりましたが、区間(1,2)で1/2<1/x<1は、証明すべき式が、等号を含まないから書いてあるのか、定積分と不等式の公式で、常にはf(x)=g(x)でないとき、にかかわるから書いてあるのか、などさっぱりわかりません。区間(1,2)で1/2<1/x<1は何のために書かれているか教えてください。お願いします。 線積分についての質問です 線積分の問題が分かりません… f(x,y)=-y/(x^2+y^2) g(x,y)=x/(x^2+y^2) であるとき、原点Oを中心とする半径aの円Cに沿った次の線積分をもとめよ ∫c(f(x,y)dx+g(x.y)dy) お力添えお願いいたします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など