- ベストアンサー
導関数の証明
F(x)を2階微分可能な関数とするとき、 {F(x+h)+F(x-h)-2F(x)}/h^2→F"(x) (h→0) をε-δ論法で証明したいのですが、どのように進めれば良いのか分かりません。 自分なりに『h<δ、|{F(x+h)+F(x-h)-2F(x)}/h^2-F"(x)|<ε』のだろうと考えてみたものの良く分かりませんでした。 どなたかこの問題が分かる方の解答、アドバイスをお待ちしております。
- みんなの回答 (1)
- 専門家の回答
F(x)を2階微分可能な関数とするとき、 {F(x+h)+F(x-h)-2F(x)}/h^2→F"(x) (h→0) をε-δ論法で証明したいのですが、どのように進めれば良いのか分かりません。 自分なりに『h<δ、|{F(x+h)+F(x-h)-2F(x)}/h^2-F"(x)|<ε』のだろうと考えてみたものの良く分かりませんでした。 どなたかこの問題が分かる方の解答、アドバイスをお待ちしております。
お礼
ご回答していただきありがとうございました。 とても参考になりました。 ありがとうございました。