ベストアンサー 三角関数 2006/12/19 16:57 先程は失礼しました。 三角関数の最大値と最小値を求める問題で、 sin^2ⅹ+3cos^2ⅹ は 1+2cos^2ⅹ と変形しても問題はないでしょうか。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー majinemui ベストアンサー率25% (2/8) 2006/12/19 17:35 回答No.2 はい、(sinx)^2+(cosx)^2=1を利用したんですね。成り立ちますよ。 けどsinxの2乗なんだからパソコンでは(sinx)^2 とかきます sin^2xだったらsinの2x乗って誤解されてしまいます。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) roadstar7 ベストアンサー率75% (3/4) 2006/12/19 17:05 回答No.1 はい、全然問題ありませんよ。 sin^2ⅹ+cos^2ⅹ=1 なので sin^2ⅹ+3cos^2ⅹ=sin^2ⅹ+cos^2ⅹ+2cos^2ⅹ=1+2cos^2ⅹ となります。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 三角関数について質問 こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。 三角関数の合成 三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m 三角関数の問題 三角関数の問題 「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ ただし 0<θ<π/2」 という問題なのですが、式を変換して (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!! 三角関数 y=-2sinθ-2cosθで0≦θ≦90°の範囲における最大値と最小値を求め、そのときのθの値も求めよという問題です。 y=-2sinθ-2cosθを合成すると2√2sin(θ+225°)と書いてあったのですが、このとき2√2sin(θ-135°)と変形してみると最小値のときのθ値が合わないのですが、2√2sin(θ-135°)と変形してはいけないのはなぜですか? 三角関数 関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。 三角関数。。。 三角関数が分かりません。 この問題の解き方を教えて下さい! 0°≦θ≦150°とする。 関数 f(θ)=cos2θ-2cosθは、θ=( )°のとき最小値( )をとる。 また、最大値はθ=( )°のとき( )である。 二次関数の最大最小と三角比の問題 (二次関数の最大と最小) y=x^2+2bx+6+2bの最小値が最大値になるときb=□のときで、その値は,□である。 私がわからないのは問題文の「最小値が最大値になる」という問題の意味がわかりません。 (三角比) 1/1+tan^2θ(1/1-sinθ+1/1+sinθ)の値を求めよ 自分はまず1/1+tan^2θをcos^2θに直しこれを1-sin^2θにしたのですが答えが出ませんでした。どういうふうに変形すればいいのでしょうか? 数II 三角関数 質問です 0≦θ≦2πのとき、関数 y=4sinθcosθ+3sin^2θ の最大値、最小値を求めよ 2sinθに変形したりしてみましたが分かりませんでした 三角関数 こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。 (1)sin2x>sinx 2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。 2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×) 三角関数 (1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。 三角関数について 物理のカテゴリではないような気がするのですが、関連があると思い、このカテで書かせてもらいます。 高校の数学で三角関数というのを習いますが、物理をやったことがないので、数学と自然との関連がどうあるのかさっぱりわからず単に答えを導いてるだけの感しか残りません。 三角関数でたとえば y=3sinθcosθ-sinθ-cosθとするyの最大値最小値を求めよ。などと問題がありますが、 一体、このyは社会または自然界の中でどういったものを表わした数値なのか。この長ったらしい式で何が求まるのかまったく想像がつきません。教えて下さい。 三角関数 三角関数の問題について教えていただきたいです途中までは出来ました 1) y=cos2Θ+sinΘ(0≦Θ<2π) でsinΘ=tとすると y=-2t^2+t+1となり、yの最大値は9/8で最小値は-2 2) aを実数とし、Θに関する方程式cos2Θ+sinΘ=a…(1)を考えるただし 0≦Θ<2π (1)が解を二つ持つ時のaの範囲を求めよ 上の問題なんですが何処から手をつけたらよいかわかりません ご教授おねがいします。 三角関数の問題 高2です。 11月進研模試の三角関数の問題で解けないのがあります。 f(x)=cos2θ-cosθで範囲が0≦θ<2πのとき {1}f(x)をcosθであらわし、そのときの最小値をもとめよ {2}f(x)が最小値のときのθをaとし、 sin{θ+a}×cos{θ+a}の最大値を求めよ {1}については一応解けましたが、{2}はさっぱりです。 お願いします。 三角関数です…; この問題の解き方を 教えてください。 問 次の関数の最大値・最小値を求めよ。 (1) y=cos2θ-2sinθ (0≦θ<2π) (2) y=sinθ-√3cosθ+1 (0≦θ≦π) よろしくお願いします(;人;) 三角関数 三角関数の問題で解けないものがあります。 教えていただけるとありがたいです。 問題;関数cosX+2√3sin(X+π/3)での最大値と最小値を答えろ。 というのもです。 2√3sin(X+π/3)を加法定理で崩して cosX+2√3sin(X+π/3)=√3sinX+4cosX=√19(X+θ) と、合成まではもっていくことができました。 しかし、ここからどのようにして最大値と最小値を求めたらよいのでしょうか。 解法と最大値と最小値の解を教えていただけるとありがたいです。 ご回答おねがいします。 三角関数の問題がまったくわかりません・・・ 三角関数の問題がまったくわかりません・・・ cosθ+sin2θ+cosθ>0を満たすθの範囲を求めよ。ただし、0≦θ<2πとする。 和→積の変形または3倍角の公式で求められるとのことですが・・・ どう解けばいいのでしょうか?解き方だけでも教えていただけるとうれしいです。お願いします。 三角関数 ABCと長方形PQRCを考える。ただし、点Aは辺PQ上(頂点を除く)にあり、点Bは辺QR上(頂点を除く)にあるものとし、∠BAQ=θ(0<θ<π/3)とする。 AQ=cosθ AP=√3sinθ CP=√3cosθ 長方形の面積をSとすると。 S=3/2sin2θ+√(3)/2cos2θ+√(3)/2 さらに三角関数の合成を行うと S=√3sin(2θ+π/6)+√(3)/2と変形できる。 0<θ<π/3のとき π/6<2θ+π/6<5π/6だから 2θ+π/6=π/2=θ=π/6 のとき最大値 S=√3・sinπ/2+√3/2 =√3+√3/2 =(3√3)/2 なぜ 2θ+π/6=π/2=θ=π/6 のとき最大値と分かるのでしょうか。 数学 三角関数 三角関数の問題です。 3cos2θ-√3sin2θ-2 を計算するんですが、 解答には、いきなり 与式=-2√3(sinθ×1/2-cos2θ×√3/2)-2 となっているんです。 上の式をどう変形したら下の式になるのでしょうか? よろしくお願いします。 数IIの三角関数の問題 数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。 三角関数 y=2sinθ(0≦θ≦7/6π)の最大値、最小値を求めよ。 三角関数の最大値、最小値の出し方が全く分かりません。 分かりやすく教えて下さい。 よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど