- ベストアンサー
共点と共線の関係
塾の宿題で、はっきりとは分からない問題があるので教えてください。 (問題) 異なる3直線 (1)x+y=1, (2)3x+4y=1, (3)ax+by=1が一点で交わるとき、3点(1,1),(3,4),(a,b)は同じ直線上にある事を示せ。 直線(1)~(3)が1点P(p,q)で交わるとき、(3)からap+bq=1 ap+bq=1は点(p,q)が直線ax+by=1上にある。 点(a,b)が直線px+qy=1上にある。 と2通りに読み取ることができる、事を利用するそうです。これもいまいち分かりません。 またPOINTというところに、「直線f(x,y)=0が点(a,b)を通る ならば f(a,b)=0」とも書いてありますが、これも分かりません。 さて、解き方です。P(p,q)は原点にならないので、(1)(2)(3)が点Pを通ることからp+q=1,3p+4q=1,ap+bq=1つまり (4)p・1+q・1=1 (5)p・3+q・4=1 (6)p・a+q・b=1 であり、p≠0またはq≠0 ゆえに、方程式px+qy=1を考えると、(4)(5)(6)から、3点(1,1),(3,4),(a,b)は同じ直線上にある。 解き方も、「つまり」の後からよく分かりません。 どなたか教えてください。よろしくお願いします。
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (3)
- eliteyoshi
- ベストアンサー率42% (76/178)
回答No.4
- postro
- ベストアンサー率43% (156/357)
回答No.2
- pyon1956
- ベストアンサー率35% (484/1350)
回答No.1