ベストアンサー 積分ができません 2001/11/21 15:48 ∫{u^(-2)*exp(-u^(-2)+A*u^2)}du を計算したいのですが全く分かりません。 ∫xdx=1/2x^2+C のように簡単に計算するにはどうしたらよいでしょうか? 教えて下さい。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー siegmund ベストアンサー率64% (701/1090) 2001/11/22 17:26 回答No.1 この不定積分はおそらく初等関数では書けないと思います. ∫{exp(A*u^2)}du も初等関数では書けません. 質問者 お礼 2001/11/22 18:02 ありがとうございました。 お陰様で本当にあきらめがつきました。 安心しました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 高校数学 置換積分の計算問題です。 ∫x^5√(1-x^2) dx u = √(1-x^2) = (1-x^2)^(1/2) u^2 = 1 - x^2 x^2 = 1 - u^2. x^4 = (1-u^2)^2. du = (1/2)(1-x^2)^(-1/2)(-2x)dx = -xdx/√(1-x^2) = -xdx/u ∴-udu = xdx. ∫x^5√(1-x^2) dx = ∫x^4・√(1-x^2)・x dx = -∫(1-u^2)^2・u・udu = -∫(u^4-2u^2+1)^2・u^2 du = -∫ u^6 - 2u^4 + u^2 du = -( u^7/7 - (2/5)u^5 + u^3/3 ) + C = - u^7/7 + 2u^5/5 - u^3/3 + C. -u^7/7 = -√(1-x^2)(√(1-x^2))^6/7 = -√(1-x^2)・(1-x^2)^3/7 2u^5/5 = 2√(1-x^2)(√(1-x^2))^4/5 = 2√(1-x^2)・(1-x^2)^2/5 -u^3/3 = -√(1-x^2)(√(1-x^2))^2/3 = -√(1-x^2)・(1-x^2)/3 ∴∫x^5√(1-x^2) dx = -√(1-x^2)・(1-x^2)( (1-x^2)^2/7 - 2(1-x^2)/5 + 1/3 ) + C. これ、合ってますでしょうか? wolframa では (-5/12)・(1-x^2)^(6/5) となります。 積分?微分? f(x) = x^2 * exp(-ax^2)の時, ∫f(x)xdx を求めるたいのですが, ヒントとしてx^2 * exp(-ax2) を微分せよと 書いてありました. 微分していくと,f(x)x が出てきて,これを積分して 求めるというやり方だと思うのですが, [x^2 * exp(-ax^2)](0-∞)が出てきて,詰まりました. どのように計算すればよいのでしょうか? それとも,微分の過程が間違っているのでしょうか? どなたかわかる方よろしくお願いします. 出典: http://www.nucleng.kyoto-u.ac.jp/people/ikuji/edu/vac/app-A/speed.html 微分方程式 次の微分方程式の一般解を求めよ。 2x+y+(x-2y)y'=0 u=y/xとおいて u'x=(-2-2u+2u^2)/(1-2u) ∫(1-2u)/(2-2u+2u^2)du=∫1/xdx -1/2∫(-2+4u)/(2-2u+2u^2)du=∫1/xdx log|(2-2u+2u^2)^-1/2|=log|x|+C log|{(2-2u+2u^2)^-1/2}/x|=C (2-2u+2u^2)^-1/2=Cx 2y-2xy-2x^2=1/c^2 2y-2xy-2x^2=c こうなったのですが、答えが違います。 この計算方法は間違っているでしょうか?? 特に -1/2∫(-2+4u)/(2-2u+2u^2)du=∫1/xdx log|(2-2u+2u^2)^-1/2|=log|x|+C log|{(2-2u+2u^2)^-1/2}/x|=C ここらへんがよくわかりません。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 積分 ∫(2x)/(2x - 1) ^2 dx 問題) By using the substitution u = 2x - 1 , or otherwise, find ∫(2x)/(2x - 1) ^2 dx これを私流に計算していくと ∫(2x)/(2x - 1) ^2 du/2 1/2 ∫ (u+1) (u^ -2) du 1/2 ∫ ( u ^ -1 + u ^ -2) du ここで途中計算の質問なのですがこれを積分すると 1/2[ u ^0 - (u ^ -1)] + c →1/2 [ - (u ^ -1)] + c となっていいのでしょうか? それとも 1/2 ∫ ( 1/u + u ^ -2) du となり 1/2 ( ln l u l - u ^ -1) + c と続いていくのでしょうか? この積分の求め方を教えて下さい。お願いします。 こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。 積分について聞きたいことがあります。 ∫√(2x-1) dx という問題なんですが、僕がやると二つ答えが出てしまいます。どこが間違ってるのか、教えてください。 ひとつめは、 ∫√(2x-1) dx = 2*2/3*(2x-1)^3/2 + c = 4/3*(2x-1)^3/2 + c となり、 ふたつめは、 ∫√(2x-1) dx u = 2x-1 とおいて、 du = 2*dx dx = du/2 ∫√(2x-1) dx = ∫1/2*√u du = 1/3*u^3/2 + c = 1/3*(2x-1)^3/2 + c となります。 ふたつめは置換積分でやりました。 どっちが正しいのか、というのと、なぜもう一方のやり方でやってはいけないのか、という理由を教えてください。 積分計算 問題 ∫ [2, 3] (6x^4 + 3x^2 -1)/ (2x^3 - x )dx 定積分をする以前に∫ (6x^4 + 3x^2 -1)/ (2x^3 - x )dx の計算に難儀しています。 いろいろな方法で計算してみましたがどれも途中で行き詰まってしまいます。 例えば ∫ (6x^4 + 3x^2 -1)/ x (2x^2 - 1 )dx x^2 をuとする。du/dx = 2x dx = du/2x ∫ (6u^2+ 3u -1)/ x(2u-1 ) du/2x ∫ (6u^2+ 3u -1)/ 2x^2 (2u-1 ) du ∫ (6u^2+ 3u -1)/ 2u (2u-1 ) du ½ ∫ (6u^2+ 3u -1)/ u (2u-1 ) du ½ ∫ 3(2u^2+u)-1 / 2u^2-u du この様な感じになってしまいます。 この問題はどの様に積分したらいいのでしょうか? 又この様な問題ではまずどこに目を向けたらいいのでしょうか? 普段分数を積分する時は分母を微分して分子になるか、とかそういう事をまず最初に考えるのですがこの様な問題ではどこに目を向けたらいいのでしょうか? 質問ばかりですみません、どなたか教えて頂けたら助かります。 微分方程式の問題 dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3 [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。 積分について 4-x^2 ∫ 2√(4-x^2-y)dy 0 この積分の計算の計算方法は以下のようなやり方でいいのでしょうか? 4-x^2-y =u とおき,両辺をyで微分して -1dy=duとし、 y=0のときu=4-x^2 y=4-x^2のときu=0 よって 4-x^2 ∫ 2√(4-x^2-y)dy 0 0 =∫ -2√(u)du 4-x^2 u=0 =[(-2)(2/3)u^(3/2)}] 4-x^2 =(4/3)(4-x^2)^(3/2) (終わり) 一つ疑問なのが、 “4-x^2-y =u とおき,両辺をyで微分して-1dy=duとする” この表現について、∂を使った偏微分にしなくていいのでしょうか? xとyがあるので、dではいけないようなきがするのですが、、、 もしこの解法が正しいのなら ∂ではなくdにしている理由を教えてください。 積分の問題で答えが二つでます。 ∫(3x + 2)^2 dx という問題なんですが、答えが二つでてしまって困っています。 展開してみると、 ∫(3x + 2)^2 dx = ∫(9x^2 + 12x + 4) dx = 3x^3 + 6x^2 + 4x + C となりますが、 置換積分でしてみると、 u = 3x + 2 du = 3dx dx = du/3 ∫(3x + 2)^2 dx = ∫u^2 * du/3 = ∫1/3 * u^2 du = 1/9 * u^3 + C = 1/9 * (3x + 2)^3 + C = 1/9 * (27x^3 + 54x^2 + 36x +8) + C = 3x^3 + 6x^2 + 4x + 8/9 + C となります。 どういう理由で一方のやりかたでやらなければいけなくて、どういう理由でもう一方のやりかたを使ってはいけないのか、というあたりを教えてください。 積分の問題 f(x)=e^(-x^2/2) ∫u^2f(u)duの求め方がわかりません。本には f´(u)=-uf(u)・・・(A)だから ∫u^2f(u)du=-∫uf´(u)du=・・・と書いてあるのですが。この後は部分積分しています。上のところがわかりません。 Aより∫f´(u)du=-∫uf(u)duは、わかるのですが、まさかこれに両辺にuをかけたわけじゃないですよね?そんなのだめですよね。では、どうやって・・・。教えてください。よろしくお願いいたします。 積分:∫(x^2+1)^50*2x dx x^2=1=uとして、d/dx[F(x)]=d/du[F(u)]du/dx=f(u)du/dxの公式を使って求めるのですが、 教科書の解説ではこうなっています。 u=x^2+1とする。 du/dx=2xなので、 ∫(x^2+1)^50*2x dx=∫[u^50 du/dx] dx=∫u^50 du=u^51/51+C=(x^2 + 1)^51/51+C ∫(x^2+1)^50*2x dxから∫[u^50 du/dx] dx=∫u^50 duに移行する間に2xが消えてしまったように思います。 どこに行ってしまったのでしょうか? duを使った積分の基本問題だと思いますが、教科書の解説が分からずすいませんが、教えてもらえますか? よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 不定積分 すみませんがどなたか詳しく噛み砕いて教えてください。 ∫x/√1-x^2 dx なのですが解は -√1-x^2 + cになるらしいのですが -1/2∫1/√u du でなぜ -√u + C になるのかわかりません。すみませんがよろしくお願いいたします。 積分 答え合わせをお願い出来ますか? 問題 → If I = ∫[0,2] x^3√(16-x^4) dx and we make the substitution u =16-x^4, the which one of the following is true? 選択が4つほどあるのですが答えは→ I = 1/4 ∫[0,16]√u du 私の答えは何回やっても I = -1/4 ∫[16,0]√u du となってしまいます。 この答えは合っていますか? そうならば途中計算を見せて頂けませんか? [a,b]は下がaで上がbです。私が勘違いしているかもしれないので念のため書いておきます。 積分 ある問題を解いていたら∫「0→π/3」tan^2xdxまで計算できて、その後は.... =∫「0→π/3」sin^2x/cos^2xdx =∫「0→π/3」1-cos^2x/cos^2xdx =∫「0→π/3」(1/cos^2)-1dx まで解きましたがそのあと行き詰まりました 多分途中のやり方が悪いと思いますが、どこがいけないのでしょうか? たわみ角とたわみ曲線の求め方(不定積分の仕方) たわみ角とたわみ曲線の求め方(不定積分の仕方) 今、大学の授業で「たわみ角とたわみ曲線」を求める問題を解いています。 この問題では(1)と(2)の方法で答えが変わってきてしまいます。 答えを見ると(2)の置換積分で解いた答えが正しいようです。 何故でしょうか? 説明よろしくお願いします。 (1)A=∫(l-x)^2dx =∫(l^2-2lx+x^2)dx A=(l^2)x-lx^2+(x^3)/3+C x=0のとき A=C (2)A=∫(l-x)^2dx u=l-xとする du/dx=-1 dx=-du A=-∫u^2du =-(u^3)/3+C =-{(l-x)^3}/3+C x=0のとき A=-(l^3)/3+C x=0のときのAの値が異なってしまいます。 よろしくお願いします。 無理関数の定積分 よろしくお願いします。 f(x)=∫{m~n}(1 - a * x^2 + b * x + c) ^0.5 dx の定積分 の計算法をご教示ください。 1) f(t)=∫{mt~nt}(1 - t) ^ 0.5 dt 2) f(u)=∫{mu~nu}(a * u^2 + b * u + c) du --------------------- 2) より f(u) = [(a/3) * a^3 + (b/2) * b^2 + c*c ] {mu1 ~ mu2} 但し mu1 = a * mu1^2 + b * mu1 + c mu2 = a * mu2^2 + b * mu2 + c 1) より f(t) = [(3/2) * (1-t) * t ^ (3/2) * (1-t) ^0.5] {mt1 ~ mt2} 但し mt1 = (1-mt1) ^ 0.5 mt2 = (1-mt2) ^ 0.5 ---------------------- f(x) = f(t) * f(u) a) どこが間違っているのか、どこをどのように直せばよいのでしょうか。ご教示お願いいたします。 b) 3次グラフ ( y=a*x^3+ b*x^2+ c*x +d )の単調変化範囲内のグラフの長さを求めようとしているのですが、 上記の考え方でよろしいのでしょうか。 ベクトル解析、線積分 添付画像の曲線Ci上の線積分(ただし、c3,c6はy=x^2です)を求める。 ∫(Ci)V・drを求めよ。 V=(x、y)、drはともにベクトルとします。 (疑問1) (1)∫(C1)V・dr=∫(0→1)xdx+∫(0→1)ydy=1* (2)~(3)ともに*という式になる (4)∫(C4)V・dr=∫(0→2)xdx+∫(0→4)ydy=10☆ (5)~(6)ともに☆という式になる。 ∫(C)V・drはベクトル場Vに対し、微小な変位を表すベクトルdr=(dx、dy)の内積を経路C上に渡って計算する。V=(u,v)に対し、V・dr=udx+VdYになるから、それぞれxとyの定義域にわたって足しあわせる。と考えて立てた式なのですが、正しいでしょうか? (疑問2) (例)y=2x(0≦x≦1)をCとする、 ∫(C)(x+y、xy)dr=∫(0→1)3xdx+∫(0→2)Y^2/2dyのように、 上の(2)などで、 ∫(C2)(xdx+ydy)=∫(0→1)xdx+∫(0→1)xdy=1/2+x/2とした(後半部分にy=xを代入した)ら間違えでした。 どうしてこの式は間違えなのでしょうか? (例と同じように考えているはずなのですが) 分数の積分問題 ∫4/(x^2-x+1)dxを求めるのに x-1/2=(√3)tanu/2とおくと dx=(√3)/2)/(cosu)^2du x^2-x+1={(√3)/2}^2/(cosu)^2 ∫4〔(cosu)^2/{(√3)/2du})^2〕du/(cosu)^2=4/{(√3)/2}∫du=8u/√3+C という答なのですが x-1/2はx^2-x+1を(x-1/2)^2+3/4から出てくると思うのですが、x-1/2=(√3)tanu/2がどうしても出てきません。なぜこうなるのでしょうか。 わかりやすくお願いします。 積分について x・dy/dx+y+y^2/xを 変数分離形になおせという問題ですが、 du/2u+u^2=-dx/xとなるのはわかりました。 次にする積分ですが右辺の-dx/xは-log|x|になるのは分かるんですが 左辺が1/2(log|u|-log|u+2|)になるのが分かりません。 さらにlog|x^2u(u+2)|=2C になる過程が分かりません。 よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。 お陰様で本当にあきらめがつきました。 安心しました。