複素数の2乗
複素数平面において、3点A(-1),B(1),C(√3i)を頂点とする△ABCが正三角形であることを用いて、3点P(α),Q(β),R(γ)を頂点とする△PQRが正三角形であるとき、
等式α²+β²+γ²-βγ-γα-αβ=0が成り立つことを証明せよ。という問題で、途中、両辺を2乗すると解答にあるのですが、納得できないので説明お願いしたいです。
△PQR∽△ABCのとき (γ-α)/(β-α)=(√3i-(-1))/(1-(-1))=(1+√3i)/2 よって
2(γ-α)-(β-α)=(β-α)・√3i この式を2乗するのですが、2乗したら右辺が
-(β-α)・√3iのときを含んでしまうと思います。
以前はsinx=cosxを、sin²x=cos²x として計算するとsinx=-cosxの解も含むと、注意を受けました。その他、線分ABとBCとCAなども、線分を2乗して方程式をつくり、Cの座標を求める問題もありますが、AB²=(-BC)²または(-CA)²の場合が含まれているか、気になり出しました。両辺を2乗するのは両辺が正のときに限るとしてきたので、戸惑っています。
2乗して導けた等式は、△PQR∽△ABCの条件を満たしているか不安です。どなたか解答のやり方でよいことを説明してください。お願いします。
お礼
ありがとうございます! ちゃんと理解することができました!