- ベストアンサー
∫[0≦x<∞]dx・f(x)は
lim(p→-0)・∫[p<x<∞]・f(x)と同値でしょうか? そして ∫[0<x<∞]dx・f(x)は lim(p→+0)・∫[p<x<∞]・f(x)と同値でしょうか? そのため ∫[0≦x<∞]dx・δ(x)=1 ∫[0<x<∞]dx・δ(x)=0 なのでしょうか?
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
- graphaffine
- ベストアンサー率23% (55/232)
回答No.3
- sudoufu
- ベストアンサー率40% (6/15)
回答No.2
お礼
ありがとうございます 参考サイトによると ∫[0<t<∞]dt・δ(t)=∫[-∞<t<0]dt・δ(t)=1/2 ですね この辺は考え方によって違いますね? だから使うたびに定義を示さないといけないようですね [0,∞)=∩[x<0]・(x,∞) (非加算無限個の共通部分)によって定義されるものとすると ∫[0<t<∞]dt・δ(t)=1 とするべきですね?