guumanのプロフィール
- ベストアンサー数
- 100
- ベストアンサー率
- 30%
- お礼率
- 86%
- 登録日2004/03/08
- Q上既約多項式x^3+px+qの最小分解体(修正版)
KがQの3次拡大体⇔√D∈Q ただし Q:有理数体 D:=-(4p^3+27q^2) と教えていただきました。 虚数解が存在する時にはKがQの6次拡大体になることは明白なので 以下与式が3実解を持つ(0<D)とします。 A:=(-q/2+i√D/6/√3)^(1/3)の実数部 B:=(-q/2+i√D/6/√3)^(1/3)の虚数部 (ただし^(1/3)は複素平面上偏角が正で最小のものとする) 与式の1実解は α=2A と表され 他の実解の1つは β=-A-√3B と表される。 -q/2+i√D/6/√3=(A+iB)^3より A^3-3AB^2=-q/2 3A^2B-B^3=√D/6/√3 なので β=-α/2-√D/(2α^2-q/α)/2 従って √D∈Q⇒KはQの3次拡大体 ということは分かりました。 質問は KがQの3次拡大体⇒√D∈Q の理由を教えてください。 √D∈Q(α)⇒√D∈Q を示すことが出きればいいと思うのですが・・・ なお、前回の同じ質問は間違っていたので回答しないでください。 よろしくお願いします。
- 下記のn次行列の固有値と固有ベクトルの求め方を教えてください。
a1 a2 ・・・・・an a1 a2 ・・・・・an ・・・・・・・・・ a1 a2 ・・・・・an a1 a2 ・・・・・an 上記は行列です。 |A-λE|=0を用いるのでしょうか? 固有多項式を求めることができません。 よろしくお願いします。
- 線形代数 直行行列の性質
線形代数の直行行列の性質で tP = P^-1 すなわちtPP = E, P tP = Eを満たすものと書かれていたのですが、ある参考書には正規直行基底を列ベクトルにもつ行列を直行行列という、とかいてあるのですが、それぞれの列ベクトルが大きさ1という条件は必要なのでしょうか。それともtPP = E, P tP = Eを満たすだけで直行行列といえるのでしょうか。
- 締切済み
- 数学・算数
- shiroshi77
- 回答数3
- 期待値の加法性の証明法
確率変数Zの確率密度関数をpとするとき,Zの期待値は E[Z] = ∫{z p(z)}dz (ただし積分範囲はZの定義される空間全体) で定義されますが,期待値の加法性: E[X + Y] = E[X] + E[Y] はどのように証明できるのでしょうか? 証明もしくは証明が載っている文献を教えて頂ければ幸いです。