- ベストアンサー
計算の途中で頭パニック!
(1) AB=2AC,cosA=9/16の△ABCにおいて、 BCを直径とする半円をBCに関して頂点Aと反対側に作る。 辺BCを2:1に内分する点をPとし、 直線APと半円との交点をQとする。 AQベクトル=αABベクトル+βACベクトルとするとき、 αの値とAP:PQの比を求めよ。 この問題であと少しで解けそうな所までいったんですけど αとβの2次方程式がでてきて、しかも因数分解できません。 CQ⊥BQを用いてα、βの値を出そうと思って ABベクトル・ACベクトル=lABl×2lABl×cosA=9/8lABl2乗 lACl2乗=4lABl2乗という風にlABlを基準にして解いたら α2乗+α(9/4β-17/8)+4β2乗-41/8β+9/8=0 という式がでてきました。 分数が入っていて分かりにくいので頭パニックです。 どこが違っているのか、アドバイス下さい。 (2) △ABCにおいて、∠Aの2等分線と辺BCの交点をDとし、 その外接円の中心をOとする。 AB=2、AC=3、∠A=θ、1/2ABベクトル=bベクトル、 1/3ACベクトル=cベクトルとするとき、 AOベクトルをbベクトル、cベクトル、θで表せ。 これも途中の式で頭がパニックになりました。 AB、ACの中点をそれぞれM、NとするとOM⊥AM、ON⊥AN AOベクトル=sbベクトル+tcベクトル(s・tは実数)とおく lAMl=lANl=lmlとするとlbl=lml、lcl=2/3lmlとかける bベクトル・cベクトル=2/3lml2乗cosθ lbl2乗=lml2乗 lcl2乗=4/9lml2乗 以上より lml2乗(1-s-2/3tcosθ)=0 lml2乗(-scosθ+1-2/3t)=0 それぞれ両辺lml2乗で割ったあとから分からなくなりました。 どこが間違っているのか、アドバイス下さい。
- みんなの回答 (3)
- 専門家の回答