締切済み お願いします 2024/02/25 12:05 下の問題の(1)で解答では相加平均と相乗平均の大小関係を使って証明していたのですが、私は左辺-右辺で(ab-1)²≧0として証明したのですがこの解答をテストでしたら丸を貰えますか? 画像を拡大する みんなの回答 (1) 専門家の回答 みんなの回答 gamma1854 ベストアンサー率52% (319/605) 2024/02/25 12:16 回答No.1 ab + 1/(ab) - 2 = (ab - 1)^2/(ab) ≧ 0. (等号成立は、ab=1のとき) で問題はありません。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 相加・相乗平均は最小値を示すのでしょうか? 相加相乗平均の証明なのですが、高等学校の教科書には a>=0, b>=0の時、(a+b)^2>=(2√ab)^2で 左辺-右辺=a^2+2ab+b^2-4ab=a^2-2ab+b^2=(a-b)^2>=0 と証明が書かれています。等号が成り立つのはa=bとなっています。 でも、相加相乗平均が最小値になるとはいえないと思うんですよ。 例えば (a+b)^2>=(√2ab)^2とします。 左辺-右辺=a^2+2ab+b^2-2ab=a^2+b^2>=0となり a+b>=√2abということも言えます。等号条件はa=b=0となります 。2√ab>√2abですから相加相乗平均が最小値には思えません。 しかし、2^X+2^(-X)の最小値を求めようとした時。相加相乗平均では2以上になりますが、先ほどの方法では√2以上になります。 ただし、2^Xも2^(-X)も0にはなりませんし、等号条件も成り立ちませんので先ほどの方法では間違っていると思えるのですが、根拠がわかりません。分かる方がいたら是非教えてください。 不等式の証明 数学II 不等式の証明 A>0,B>0のとき、不等式(B/2A)+(2A/B)≧2を証明しなさい。 という問題なのですが、左辺を相加平均、右辺を相乗平均すると解答には書いてあるのですが意味がわかりません。 どうか詳しくお教えいただけないでしょうか? お願いいたします。 相加・相乗平均の問題 相加・相乗平均の問題 √ab ≧ 2/(1/a + 1/b) を相加・相乗平均を使ってどうやって証明するのですか?? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 相加・相乗平均を使う不等式 相加相乗平均を使う不等式の問題で分からないものがあります。 a,b,c,dは全て正の数として *(a+2/b)(2b+1/a)≧9 を証明する問題では、左辺を展開した後に相加相乗平均を使って証明をしてますよね。 ですが *(a+2b)(2c+d)≧8√abcd のときには a+2b≧2√2ab 2c+d≧2√2cd を証明して二つをかけ合わせますよね? このとき方の違いはどうしてでしょうか? 上の問題の方では、下のようなとき方をしてはいけないと習った気がするのですが・・・・ 大学受験における相加平均・相乗平均の関係 相加平均・相乗平均の関係というものがありますよね 0≦a 0≦b → √ab ≦ (a+b)/2 これは大学受験でも結構使う場面があるのですが 私には、毎回かなり突拍子も無く出てくる印象があります 私は定型問題はほとんど落とさず 初見の問題でも、既知の定理を使って、かなり食いつけるようになって きたのですが、相加平均・相乗平均の関係を使うべき場面で 相加平均・相乗平均の関係を使うことを思いつかず、その問題を落とすという ことが多々あります ほかの定理では問題文から落ち着いて考えていけば その定理を使うという発想が出てくるのですが、相加平均・相乗平均の関係 を使うべき場面では、どうすればそれを使うことが思いつけるのかわかりません ab と a+b が出てきたら怪しいな ab と a+b が最小最大にからまって出てきたらかなり怪しいな という考え方ぐらいしか思いつかないのですが、それ以外にどう考えていけば 相加平均・相乗平均の関係を思い出せるようになるのでしょうか? 相加平均≧相乗平均が通じない場合・・・ 相加平均≧相乗平均が通じない場合があったと思うのですが忘れてしまいました。 たしか、相乗平均が定数にならない場合だったと思うのですが、 でもって、左辺のグラフと右辺のグラフを書いてみると、 左辺=右辺の場合(グラフが接しているとき)の変数(仮にxとします)の値と、 左辺が最小値をとるときのxの値が異なる・・・と記憶しているのですが、 具体例を忘れてしまいました。 どなたか,具体例と解説をお願いできないでしょうか? 相加平均と相乗平均の関係の意味 (相加平均)≧(相乗平均)はわかりました。 さらに、これを利用すると様々な不等式が証明できることもわかりました。 (分かったといっても初歩的なところですが) ただ、証明問題が、印象として、(相加平均) ≧ (相乗平均)を使わせるための証明問題というように感じてしまいます。 それは、(相加平均) ≧ (相乗平均)の意味を理解していないからだと思うのですが、この関係はそもそもどんな意味があるのでしょうか。 漠然とした質問ですがお教えください。 不等式の証明 相加平均 相乗平均 ab>0のとき(a+1/b)(b+1/a)≧4を証明 この問題の解き方を教えてください。 相加平均相乗平均がいまいちわかってないので詳しくしてくれると助かります^^; 相加平均・相乗平均の問題 こんばんは~。相加平均相乗平均の問題です。 a>0、b>0のとき、次の不等式を証明せよ。 また、等号が成り立つ場合を調べよ。 a+2/a ≧ 2√2 この問題の左辺≧右辺という証明まではできたんですが、 等号が成り立つ場合の証明ができませんでした。 参考書には a=2/aより √2となる。 と書いてありました。 この問題は不等号を等号に変えるだけで解けるはずなのに、 つまりa+2/a = 2√2と等号に変えるだけでいいはずです。 でも、参考書の説明はいきなりa=2/aとなっているのですが、 これはどういうことなのでしょうか? x+y≧2√xy x≧0,y≧0,x^2+y^2=1,のときx+yの最小値を求めよ。 --------------------------------------------------- S君の解答 x≧0,y≧0から相加平均≧相乗平均の関係を使って x+y≧2√xy・・・(*) 等号が成り立つのはx=yのときだからx=y=√1/2のとき よってx+yの最小値は√2 --------------------------------------------------- S君の解答の誤りを指摘せよ。が問題ですが (*)の右辺が定数でないのに「等号が成り立つx=yのとき最小」としているのが誤り。 が解答ですよね。 右辺が定数にならないと相加・相乗はつかってはいけないというのは「知って」います。 (知っているだけでナゼかがわからない) しかし、それだけ(右辺が変数)で解答になるのがどうも納得がいかないというか。 (x≧0,y≧0,x^2+y^2=1,のときx+yの最小値は求められますのでこちらの回答は結構です) 相加・相乗平均の関係 相加・相乗平均の関係について質問です。 相加・相乗平均の式は、不等式の証明等でよく使いますし、なかなか自分でも使い慣れてきたとは思うのですが、考えてみると、どうして成立するのか。そもそも、どうして相加・相乗平均の式で最小値が求まるのか、疑問がわいてきました。そこで質問なのですが、相加・相乗平均の式の意味を教えてください。あともう一点、もし証明するようなことが可能であれば、証明の仕方を教えてください。大学受験レベルでは必要ないでしょうか?よろしくお願いいたします。 相加平均と相乗平均? 1,2,3,4,5の5つの数字があるときの 相加平均は(1+2+3+4+5)÷5ですよね!? 相乗平均は√ ←1×2×3×4×5であっていますか!? 参考書には相加平均ab÷2,相乗平均√←ab としか書いていないので心配です。 回答お願いします。 集合と論理 「a,b∈R ab≧1⇒a^2+b^2≧a+bであることを証明せよ。」 この問題について私は相加相乗平均の関係を用いて a^2+b^2≧2√a^2b^2=2|ab|≧2 などと色々計算しましたが、なかなか証明できません。 証明方法についてご回答宜しくお願いします。 相加・相乗平均の関係を使った不等式の証明 不等式の証明で、 x,y,zが正の実数で、xyz>1のとき x^2y+y^2z+z^2x>xy+yz+zx となることを証明せよ、という問題なのですが、 おそらく左辺を3項の相加・相乗平均の関係を使って 左辺≧3xyzを使うのだろうということ以外分かりません。 ご教授お願いします。 数学II (相加平均)と(相乗平均)の関係を使って、不等式を証明する問 数学II (相加平均)と(相乗平均)の関係を使って、不等式を証明する問題です。 解説を読んだのですが理解できないので教えてください。 (b/a+d/c)( a/b+c/d)≧4 (解説) (1)(b/a+d/c)( a/b+c/d)=2+bc/ad+ad/bc (相加平均)≧(相乗平均)の関係の関係から (2)bc/ad+ad/bc≧2√bc/ad×ad/bc=2 (3)∴bc/ad+ad/bc+2≧2+2=4 両辺に同じ数を加えても、大小の関係は変わらない。 (4)したがって、(b/a+d/c)( a/b+c/d)≧4 とあり、(1)の式は導くことができたのですが、(2)式への導き方が分かりません。 相加平均と相乗平均(a+b/2≧√ab)についての基礎は理解しているつもりです。 できましたら、詳しい式とあわせて言葉での解説があるととても助かります。よろしくお願いいたします。 早稲田 商学部 2009 数学 以下の問題を相加相乗平均の関係を使って解こうとしたのですが解答と違う答えになりました。 理論上やっていることは間違っていませんよね? もし間違いがあればご指摘いただきたいです。 よろしくお願いします。 数学の質問です。 ab^2c=16の時a+b+cの最小値を求めよ。 誘導でこの前に二項、四項、三項の相加相乗平均の証明があるのでそれを踏まえての問題だと思いますがうまくできません。よろしくお願いします……。 不等式の証明 a>0、b>0の時(a+b)(1/a+1/b)≧4が成り立つ事を調べよ。 まず、左辺を展開して1+a/b+b/a+1。これを整理して、2+{(a^2+b^2)/ab} このような式変形でいいのでしょうか?ここから先はどのように証明していくのですか?相加・相乗平均を使うのかなとは思っています・・・簡単な事を質問しているかもしれませんが、教えて下さい。 相加平均 相乗平均って、、、 普通の不等式の証明と、相加平均、相乗平均の関係を使った不等式の証明がありますよね。どういう場合に応じて使い分けたらいいのかわかりません。教えてください。 数学IIの問題についてです。至急よろしくお願いします。 問 a>0、b>0のとき、次の不等式を証明せよ。また、等号が成り立つときを調べよ。 a/b+b/a≧2 この問題について、二つ質問させていただきます。 (1)この問題は相加平均と相乗平均についてですが、 相加・相乗平均であるのは、 「問の不等式(a/b+b/a≧2)が、a+b/2≧√abもしくはa+b≧2√abの形であるから」という解釈で正しいですか? (2)また、等号成立は「a/b=b/aすなわちa=b」ですが、 こちらは「a+b/2≧√abもしくはa+b≧2√abの等号が成り立つのは a=bのときであるから」という解釈で正しいですか? ご指摘よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など