締切済み 空間ベクトル 2022/02/25 23:36 2つのベクトル↑a=(0,1,2)、↑b=(x+1,0,x-1)のなす角が45°となるようなxの値。 ご教授ねがいます。 みんなの回答 (1) 専門家の回答 みんなの回答 alain13juillet ベストアンサー率20% (116/562) 2022/02/25 23:48 回答No.1 内積の定義そのもの。 ↑a・↑b=abcos45° 2(x-1)=√5√{(x+1)^2+(x-1)^2}を解くだけ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 空間のベクトル 2つのベクトル↑a=(1,x,0),↑b=(x+1,0,x-1)のなす角が45°のとなるようなxの値。 x+1=√x+1 × √(x+1)^2+(x-1)^2 × cosθ の式が立つと思うのですがこれの計算の仕方がわかりません…教えていただけませんか 空間ベクトルなのですが・・・ 1. 3点、A(2,5,1)、B(0,3,7)、C(6,0,4)があ り、点Dを選び、四角形ABCDが平行四辺形にしたいのですが、 Dの座標をどのように設定したらいいのでしょうか? 2.次の三点が一直線上にあるように定数、a,bの値を定めよ。 (-3,2,-1)、(2,-5,3)、(a,b,-5) 3.aベクトル=(-2,-1,3)、bベクトル=(1,3,2) のとき、次の2式を同時に満たすベクトル、 xベクトル、yベクトルの成分を求めよ。 3x+y=a,7x+3y=b (ベクトル記号“→”は省略してます) ご回答の方、お願い致します。 **************** 4.平面ax+2y-z=6と次の方程式で あらわされる直線が平行となるように定数aの値を定めよ。 x=1-t,y=-1+5t,z=4+7t この問題については、自分、法線ベクトルを用いてやったら、できたのですが、なぜ、平行なのに、法線ベクトルを使うのでしょうか? よくわかりません、教えてください。 空間ベクトル 空間内に2直線 x+1=(y-1)/a=z (1) -x+1=y+b=(z-1)/2 (2) があり(1)、(2)は交わり、そのなす角は60度である そのとき a=? B=? どのように解くかわかりません。 おねがいします 方程式を解くと x=-2/3 z=1/3 となったのですがどのように解くかわかりません。 空間においては、 ベクトルu=(p,q,r)に平行で、点(a,b,c)を通る直線の方程式は (x-a)/p=(y-b)/q=(z-c)/r と表すことができます。 また、ベクトルuのことを「直線の方向ベクトル」ということしかわかりません。 全くわからないのでおしえてください 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトル aベクトル=(1,2,3) bベクトル=(-1,1,1) とする。 tを動かすとき、xベクトル=aベクトル+tbベクトルの 大きさ│xベクトル│の最小値を求めよ。 また、そのとき、xベクトルとaベクトルのなす角をθとするとき、 cosθの値を求めよ。 考えたのですがわかりません。 解説おねがいします。 空間ベクトル e1ベクトル、e2ベクトル、e3ベクトルをそれぞれx軸、y軸、z軸に関する 基本ベクトルとし、ベクトルaベクトル=(-1、√2、1)と e1ベクトル、e2ベクトル、e3ベクトルのなす角をそれぞれ α、β、γとする。 (1)cosα,cosβ、cosγの値を求めよ。 (2) α、β、γ を求めよ。 この問題が解けません。 解説付でといてくれる方 お願いします。 空間ベクトルの問題 空間ベクトルの問題 ベクトルa=(1,x,2) ベクトルb=(-3,x,x) が垂直となるためのxの値を求めよという問題ですが、 やり方がわからず困っています…。 解説をよろしくお願いします。 空間ベクトルの内積で・・・ 数研出版の新課程スタンダート数学II+Bの問題なのですが、詳解がなく解答できずに困っています。 → → → 128 3つのベクトルa=(x,1,2)、b=(-1,y,0)、c=(1,-√2,z)がある。 → → → → → aとbとは垂直、aとcとは120°の角をなし、cの大きさは2である。x、y、zの値を求めよ。 という問題です。 途中式があると嬉しいですが、どのような手段で解けばいいか順を追って説明してくれても助かります。 よろしくお願いします。 平面のベクトルと空間のベクトル (1)平面の場合 次の2直線の作る角を求めよ。 l:x-1=-y+2 m:(x-1)/(1‐√3)=y/(1+√3) lの方向ベクトル=(1,-1) mの方向ベクトル=(1‐√3,1+√3)がとれる。 よって cosθ=-√3/2 よって θ=5π/6 よってlとmの作る角はπ-θ=π/6 (2)空間の場合 次のベクトルの作る角を求めよ。 a=(2√2,-1,4) b=(0,1,-1) よって cosθ=-1/√2 よって θ=3π/4 でここからなんですが(1)だとθが鈍角の場合答えはπ-θにするように教えられました。(2)の場合も鈍角なのでπ-θをして答えはπ/4 なんですか? また、そうだとしたらどうして鈍角じゃだめなんですか? おねがいします。 空間ベクトルについて 空間の2点をA(-3,1,-2)B(3,―1,1)とし、aベクトルの成分を(-1、-4,4)とする。aベクトルをABベクトルに平行なbベクトルと、ABベクトルに垂直なベクトルcの和に表すとき、bベクトル、cベクトルの成分を求めよ。 問題文から、aベクトル=bベクトル+cベクトル、bベクトル=kABベクトル,ABベクトル・cベクトル=0。aベクトル・ABベクトル=14を求め(bベクトル+cベクトル)・ABベクトル=14からkの値を求めています。(bベクトル+cベクトル)・ABベクトルはどこからでてきているのですか?発想の仕方が良く分かりません。教えてください。お願いします。 ベクトルの問題(2) わかるかた解答ください!!※解答以外の回答いりません 以下 →aなどの矢印省略いたします。 次の2つのベクトルの内積を求めなさい。 (1) a=(-5,3,-2),b=(2,3,-1) (2) a=(4,-4,7),b=(6,-2,-3) ベクトルa=(2,-3,-1),b=(3,-5,1),c(2,xによる,-2)について次の問いに答えなさい。 (3) 内積a・bの値を求めなさい。またa,bのなす角を0とするとき、cos0を求めなさい。 (4) a,cが垂直になるようにxを求めなさい。 問題変わって (5) a=(2,x,-3),|a|=7となるような,xの値を求めなさい。 (6) a=(-2,4,1),b=(x+1,-x-3,-x)が垂直になるように、xの値を求めなさい。 空間ベクトル 空間内の4点A(1,3,-1),B(0,2,1),(1,1,0),(-1,7,z)が同一平面上に存在するように、zの値を求めよ。 という問題なのですが、ABベクトル、ACベクトル、ADベクトルを求めるに当たって、点Aから各点を引いていたのですが、√の中に入れて二乗してそれらを足さなくてもいいのですか? 公式のAB=√(b1-a1)^2+(b2-a2)^2+(b3-a3)^2 を使わない理由が知りたいです。 ベクトルは学習したことがなく、独学中ですので、おかしなことをいっている部分もあると思いますので、全体的な解説を踏まえて教えてくださるとありがたいです。 宜しくお願い致します。 数学Bベクトルの問題! 数学Bベクトルの問題! ・aベクトル=(-√3.1)と120゜の角をなし、大きさが2√10 であるベクトルxベクトル を求めよ。 ・aベクトル=(1.2)、bベクトル=(3.-2)とする。aベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=|bベクトル|=2、a・b=-3とする。aベクトル+bベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=4、|bベクトル|=5でaベクトルとbベクトルのなす角が60゜であるとき、ベクトル2a ベクトル-3bベクトルの大きさを求めよ。 です。お願いします☆ 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数Bのベクトルの問題です。解説お願いします。 (1)aベクトル=(-3、0、-3√3)とx軸、y軸、z軸の正の向きとのなす角をそれぞれ求めよ。 (2)aベクトル=(-1,0、-1)、bベクトル=(-1,2,2)、cベクトル=aベクトル+tbベクトルについて、cベクトルとaベクトルのなす角とcベクトルとbベクトルのなす角が等しくなるようなtの値を求めよ。 お願いします。 ベクトルの問題です 2つのベクトル、ベクトルa=(x,2)、ベクトルb=(x-3,x-6)のなす角が鈍角となるような実数xの値の範囲を求めよ。 という問題で、解説を見たのですが、xの範囲が-3<x<4となるまでは分かります。しかしその後に、 「ただし、cosθ≠-1より、x≠4-√10、よって、-3<x<4-√10,4-√10<x<4」 とありました。cosθ≠-1なのは分かりますが、そこからどうやってx≠4-√10が出たのかが分かりません。そのx≠4-√10の求め方をよかったら教えて下さい。分かりにくくてすいません。 ベクトル空間の公理 教科書で 「ベクトル空間において0ベクトルはただひとつ、また任意のaに対して、公理;Vの任意の元aに対してa+x=0となるVの元xがある。によるxは一意的に決まる」(a,x,0はそれぞれベクトルで特に0は零ベクトル、Vはベクトル空間) の証明で0ベクトルが1つと示した後、 公理x+0=xに0=a+yを入れて x+(a+y)=x+0=x 公理(a+b)+c=a+(b+c)より x+(a+y)=(x+a)+y=0+y=yであるからx=yが成り立つ と書かれていたのですが、x+a=0となることがどうしてなのか分かりません。 aの逆元は1つであることの証明だと思うのですが どなたか回答お願いします 空間ベクトル ベクトル空間 空間ベクトル ベクトル空間 線形空間=ベクトル空間と認識しています。 テキストの内積空間の項目で空間ベクトルという表現がありました。 例えばベクトルaとベクトルbの内積はa・b=|a||b|cosθと表され、 これを空間ベクトルと表現しています。||は絶対値です。 空間ベクトルとは何なのでしょうか? ある集合内のベクトルの事を空間ベクトルと呼んでいるのでしょうか? ご回答よろしくお願い致します。 ベクトル空間の問題です. ベクトル空間の問題です. ------------------------------------------------ 3つのベクトルa={4 1 0},b={1 1 3},c={1 -12 -13} が与えられており, 設問1 a,bが張る部分空間Wの直行補空間W⊥を求めよ. 設問2 c=x+y(x∈W, y∈W⊥)であるx,yを求めよ. ------------------------------------------------ という問題なのですが,設問2がよく分かりません. 解き方はわかったのですが,何故そうなるのかが知りたいです. どうかご指導よろしくお願いします. ちなみに設問1は, a,bのベクトル成分が各々直行するので, 任意のベクトルをx={x1 x2 x3}とすると, (4*1)x1+(1*1)x2+(0*3)x3=0 この方程式を解くと, 4*x1=-x2, x3は任意の大きさとなり, W⊥={x|k -4k k}, k:任意の定数. でよろしいでしょうか? すみません。 空間ベクトルの問題の質問なんですが、 すみません。 空間ベクトルの問題の質問なんですが、 pを実数とし、空間ベクトルa,b,cが「a・b=0ではない」、「b⊥c」を満たすとき、 a・x=p, b×x=cとなるベクトルxをp,a,b,cを用いて表す問題なんですが・・ 教えてください… ベクトル空間 a = (2,2,3) b = (2,0,-4) c = (1,-2,1) でベクトルaが生成する1次元ベクトル空間を考え この空間へ上記ベクトルbを射影したベクトルb'を求めよ。 この問題での「ベクトルaが生成する1次元ベクトル空間」とはどういうことですか? 空間ベクトルあたりがいまいちピンとこないので、教えてくださると助かります。 ベクトルの問題です。 (内積)>_< (1)|a→|=2 |b→|=3、|c→|=4 a→+b→+c→=0→でb→とc→のなす角をΘとするとき CosΘを求めよ。 (2)二つのベクトルx→とy→が直交し、 |x→|=1、|y→|=3である。α→=2x→ーy→とβ→=x→+py→が直交するような実数pの値と、|α→|、|β→|を求めよ。 この問題解けませんでした。 (1)は bとcのなす角をΘとするとき と書いてあるのでCosΘ=a×b/|a||b| の公式を使う問題だとおもいました。 それぞれ代入していこうと考えましたけど |a|と|b|のほかに|c|もあるので、 代入は全部できません。 まず、|a||b|を代入して、a×bの部分は|a| =a?と考えて、2を代入してよいのでしょうか? そうするとCosΘ=2×3/|2||3|となりますけど。。これだと、違います>_< どなたか教えてください。 (2)は 直交する条件は、a×b=0もしくはa1b1+a2b2=0 ですので、題意に書いてある|x→|と|y→|を いまこれは、”大きさ?”を表してる意味なので ”成分表示?”に変更して式をつくるのでしょうか?? まだ、大きさと成分表示とか色々ごちゃごちゃしてて はっきりしません>_< そのあとは、求まったxとyを用いて、題意のα=2x-yのxとyにその値を代入して行く~。。って流れでしょうか??>_< 結局良く解りませんでした、 どなたかベクトルの詳しい方、丁寧に教えて下さい お願いします。。 あと、上の説明とか、ベクトルの公式とかで、×を使いましたけど、点というのが記号でなかったので、×を使いました>_< 意味が違うと昔習いました。。 宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など