ベストアンサー 数学の問題です。お願いします。 2020/05/30 19:12 数学の問題です。お願いします。 放物線y=9-x^2とx軸の交点をA,Bとし、線分ABと放物線とで囲まれた部分に台形ABCDを内接させるとき、この台形の面積の最大値を求めなさい。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gamma1854 ベストアンサー率52% (320/607) 2020/05/30 19:20 回答No.1 C(t, 9 - t^2) とすると台形の面積S(t)は、 S(t)=(1/2)(6+2t)(9 - t^2), (0<t<3) です。この関数の増減を調べてください。 ーーーーーーーーーー Max(S)=S(1)=32. 質問者 お礼 2020/06/08 00:25 ありがとございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A §関数の増減§の問題 放物線y=9-(x^2)とx軸との交点をA,Bとし線分ABとこの曲線で囲まれた部分に内接する台形ABCDの面積の最大値を求めよ。 という問題なんですが とりあえず台形の面積をAとして 線分ABの長さは上の式より6 それでA= の式にしたいのですが何をxとおけばいいでしょうか? 数学II 積分 曲線y=9-x^2 と x軸との交点を A,Bとし、線分ABと この曲線で囲まれた部分に AB//DCであるような台形ABCDを内接させるとき、この台形の面積の最大値を求めよ。 またそのときの点Cの座標を求めよ。 の解き方を教えてください。 答:最大値32,C(1,8) 数学Iの問題です 1次関数 y=1/2x + 4 のグラフとx軸との交点をA、 y軸との交点をBとする。 線分AB上に点PをとってPからx軸に垂線をひき、 x軸との交点をQとする。 四角形BOQPの面積が6になるときの、 点Pの座標を求めよ。 この問題の回答に、 「点Pが線分AB上にあるための条件は 0<x<8 」 と書いてありました。 なぜ、0と8を含まないかを教えてください。 自分で考えたのは、「図形の面積が0になってしまうから」と 「四角形でなくなるから」ですが、 違う問題では面積が0になる値も範囲に含んでいたので 違う理由なのかと思いました。 「線分AB上」というのは、点A。点B上は含まないのでしょうか。 理由がよくわからないので教えてください。 画像添付しました。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学の問題です。 AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。 積分の問題です 放物線y=x^2-2と直線y=axの二つの交点をA,Bとする。2点A,Bの間の放物線上に点Cをとり、放物線と線分ACで囲まれた図形の面積をS1、放物線と線分BCで囲まれた図形の面積をS2とする。このとき、S1+S2の最小値をaを用いて表せ。 (一対一対応の数学II、p160の演習11) 以下は別解です 放物線y=x^2-2と直線y=axが囲む部分の面積をSとおくと、S1+S2=S-△ABCである。そこで、△ABCの面積が最大になる場合について考える。 ここで図形が書いてあるのですが、点Cの位置はCでの接線が線分ABに平行になるような場所になっています。 これはなぜなのでしょうか? よろしくおねがいします。 数学の問題がわかりません。 数学の問題がわかりません。 aを正の定数とする。2つの放物線C1:y=x^2 と C2:y=(x-2)^2+4a の交点をPとする。 (1)放物線C1上の点Q(t,t^2)における接線の方程式を求めよ。更に、その接線のうちC2に接するものをLとする。Lの方程式を求めよ。 (2)点Pを通りy軸に平行な直線をmとする。Lとmの交点をRとするとき、線分PRの長さを求めよ。 (3)直線L,mと放物線C1 で囲まれた図形の面積を求めよ。 わかりません。。 お願いします!! 数学の問題です。 カテゴリ(中学受験)に投稿してしまいましたので、再投稿です。 申し訳ありません。 AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。 分かりません。2つ問題 分かりません。2つ問題 (1)円(x-1)^2+(y-1)^2=1と直線y=-x+1の交点をA,Bとするとき、 線分ABの長さとして次のうち正しいのはどれか? (2)放物線y=-x^2+1と直線y=-2x-2と囲まれる部分の面積はいくらか? 分からない問題ばかりですみません。お願いします 数学の積分?面積?に関する問題なのですが・・・ 数学の積分?面積?に関する問題なのですが・・・ 放物線C:y=x^2上の点A(a, a^2), B(b, b^2) をとる。ただし、b<0<aとする。 (1)放物線Cの点Aにおける接線と点Bにおける接線の交点の座標を求めよ。 (2)放物線Cと直線ABで囲まれる部分の面積Sを求めよ。 (3)三角形OABの面積をTとするとき、T/Sがとりうる値の最大値を求めよ。ただしOは原点(0, 0)である。 積分というものが正直よくわかりません。 なのでどなたか解説お願いします。 数学の問題 Xの二次関数y=2^x2-8x+6のグラフをG1とする。G1とX軸との交点をA,Bとする。 G1とY軸との交点をCとする。 点CのY座標は( )である。 直線ACの式はy=( )である。 点Bを通り直線ACに平行な直線Lの式は、y=( )である。 二点ABを通り、軸はy軸に平行であり、頂点が直線L上にある放物線G2の式はy=( )である。 この( )にはいる答えをわかりやすく教えて下さい。 数学の問題です。 お願いします a>0とし、放物線y=ax二乗上の点P(1、a)における接線をL、点Pを通りLと直交する直線をL´、y軸とL´の交点をQとする。線分PQ、y軸および放物線y=ax二乗で囲まれる図形の面積をSとして、Sを最小にするaの値と最小値を求めよ。 お願いします 数学の問題 放物線y=-1/5x^2+2xと直線y=xによって囲まれる領域(境界を含む)に含まれ、各辺がx軸またはy軸に平行となる正方形の面積の最大値を求めよ。 という問題がわかりません。 誰か教えてください!! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 座標の問題 放物線A:y=2x^2+6x-8と直線B:y=5x+13がある。放物線AとY軸との交点をa、直線BとY軸の交点をb、放物線Aと直線Bとの交点でx座標、y座標とも正である点をcとし、a、b、cを頂点にした三角形を三角形abcとする。このとき、点bを通り三角形abcの面積を2等分する直線とX軸の交点のx座標はいくらか。 という問題があるのですが、AとBにそれぞれx=0を代入し、aとbを出すとこまでは出来たのですが、cを出すのがわかりません。 cの出し方とその後の計算方法を教えてください。 こんばんは。数?の問題について教えてください。 こんばんは。数?の問題について教えてください。 原点Oからの放物線y=x^2+ax+bに引いた2本の接線の接点をP,Qとする。(b>0、Pのx座標<Qのx座標) 線分PQと放物線およびy軸で囲まれた図形の面積をS1、線分PQと放物線およびy軸で囲まれた図形の面積をS2とするとき、S1とS2との比を求めよ 式まで書いていただけるとうれしいです; よろしくお願いします。 中学校の二次関数を至急教えてください (1)図で点P、Qは放物線3分の1x^2 と点A(-6,0) を通る傾きが正の直線との交点である。 AQ:QP=1:3のとき点Pの座標はいくらか。 (2)図で直線lと放物線y=kx^2(kは正の定数)の交点をそれぞれ A、B、lとx軸との交点をCとする。 A、Bのx座標をそれぞれa、b、Cのx座標を-4、 AB:BC=8:1とするとき、 (1)aとbの値はいくらか。 (2)三角形OABの面積が64のとき、kの値はいくらか。 (3)図においてy=2x^2のグラフと直線y=2x+4との交点をそれぞれA、Bとする。また、y軸に平行な直線lと直線AB、放物線、x軸との交点をそれぞれP、Q、Rとする。 このとき、点Pが線分AB上にあるとき、PQ=QRとなるような点Pのx座標の値はいくらか。 数学が苦手なので分かりません、よろくおねがいします。 数学・微分の問題です。 三つの放物線 C1:y=x^2-2x, C2:y=k{x^2-(2-a)x+b},C3:y=x^2+(5/2)x がある。 ただし,k,a,bは定数で,k>0,a<0とする。 放物線C1とx軸の交点のうち原点以外の点をAとすると,A(?,0)であり,点AにおけるC1の接線lの方程式はy=?x-?である。 放物線C2が点Aを通るとき,b=?aであり,さらにC2とx軸とで囲まれた図形の面積がk/6のとき,a=?.a=? である。ただし,?<?とする。 b=?a,a=?とする。点AにおけるC2の接戦がlと一致するとき,k=?であり,C2とC3の交点のx座標は?/?, ? である。 0≦x≦? の範囲で,三つの放物線C1,C2,C3で囲まれた図形の面積は?/? である。 問題文中の ? は空欄で、そこの値を求めてください! 数学の問題です 数学の問題です。 小問が4つありますが、3と4を解答お願い致します。 原点Oと2点 A(2、-4)、B(3、a)があります。 1、三角形OABの面積を求めよ。 答え 15 2、三角形OABの面積を原点Oを通る直線で2等分するとき、この直線と辺ABとの交点Cの座標を求めよ 答え(2分の1、2分の13) 3 直線ABとy軸の好転をDとする。 Dを通る直線で三角形OABの面積を2等分する時、この直線の式を求めよ。 答えはy=-9x+6 この解答に至るプロセスを教えて下さい。 4、y軸に平行な直線で三角形OABの面積を2等分するとき、その直線と辺OB,辺ABとの交点をそれぞれ、P,Qとするとき 線分PQの長さを求めよ。 答えはPQ=ルート30 この解答に至るプロセスを教えて下さい。 よろしお願い致します。 数学の問題です。 数学が得意な方教えて下さい。 放物線y=x2乗-2xとx軸で囲まれる部分Fの面積はア/イである。 直線y=axがFの面積を2等分するとき、a=3√ウ-エである。 また、放物線y=x2乗-2xと直線y=axで囲まれる部分の面積をx軸が2等分するとき、a=オ3√カ-キである。 ア~キは数字1字です3√の3は√の左上についてる3です。 よろしくお願いします。 数学おねがいします (1)図のような平行六面体において、↑OA=↑a,↑OC=↑c,↑OD=↑dとおく。 線分EAを1:2に内分する点をMとする。直線CMと平面OBGとの交点をLとする。 (1)↑CMは? (2)|↑CL|/|↑CM|は? (2)放物線y=x^2-4xとx軸で囲まれた部分をDとする。 (1)直線y=axがDの面積を2等分するとき、定数aの値は? (2)放物線y=bx^2がDの面積を2等分するとき、定数bの値は? 過程もお願いします>< 2次関数の問題 数学Iのほうの問題でかなり考えたのですがどうしても分からない問題があったので、質問させていただきました。 問題は、『曲線:y=-x^2+ 3x +4(x≧0)とx軸、y軸の交点をそれぞれ、A、Bとする。C上の点Pがx>0かつy>0の範囲を動くとき、△PABの面積の最大値と、そのときの点Pの座標を求めよ。』という問題なのですが、とりあえず点Pの座標を(a,b)とおき、台形の面積を出してそこから余分な三角形の面積をひくというやり方でやっていたのですがどうも上手くいかなくて・・・。台形の面積から余分のものをひいて、文字の式が出てきていろいろやってみたのですが答えには辿りつけませんでした。 なお、それには略解しか載っておらず、答えは点Pのとき(2,6)最大値8だそうで非常に困っています。。 もしよろしければどなたか解き方などアドバイスをいただけないでしょうか?お願い致します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとございました!