締切済み ベクトルの内積 2018/10/21 20:51 この問題が分かりません。どなたか説明してください! 解答の青いところが分かりませんでした。 画像を拡大する みんなの回答 (5) 専門家の回答 みんなの回答 jcpmutura ベストアンサー率84% (311/366) 2018/10/23 15:26 回答No.5 D=B^2-4ACをtの2次方程式At^2+Bt+C=0の判別式という A=|b|^2>0 B=2(a,b) C=0 の時 tの2次不等式 At^2+Bt+C=|b|^2t^2+2(a,b)t≧0 がすべての実数tに対して成り立つとすると At^2+Bt+C≧0 ↓A>0だから両辺にAをかけると AAt^2+ABt+AC≧0 {At+(B/2)}^2-B^2/4+AC≧0 {At+(B/2)}^2-(B^2-4AC)/4≧0 ↓両辺に(B^2-4AC)/4を加えると {At+(B/2)}^2≧(B^2-4AC)/4=D/4 ↓これがすべての実数tに対して成り立つから ↓t=-B/(2A)に対して成り立つから ↓これにt=B/(2A)を代入すると {A(-B)/(2A)+(B/2)}^2≧(B^2-4AC)/4=D/4 {-B/2+(B/2)}^2≧(B^2-4AC)/4=D/4 {(-B+B)/2)}^2≧(B^2-4AC)/4=D/4 (0/2)^2≧(B^2-4AC)/4=D/4 0≧(B^2-4AC)/4=D/4 逆に 0≧(B^2-4AC)/4=D/4 ならば {At+(B/2)}^2≧0≧(B^2-4AC)/4=D/4 だから {At+(B/2)}^2≧(B^2-4AC)/4 ↓両辺に(4AC-B^2)/4を加えると A^2t^2+ABt+AC≧0 ↓両辺をAで割ると At^2+Bt+C≧0 がすべての実数tに対して成り立つから tの2次不等式 At^2+Bt+C≧0 がすべての実数tに対して成り立つ条件は D/4=(B^2-4AC)/4≦0 ↓B=2(a,b),C=0だから (4(a,b)^2-4A*0)/4≦0 (4(a,b)^2)/4≦0 (a,b)^2≦0 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 f272 ベストアンサー率46% (8653/18508) 2018/10/22 15:55 回答No.4 私なら,そこに書いてあるような計算をせずに添付画像のように考えて,aとbが直交する(a・b=0)と答えます。 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 178-tall ベストアンサー率43% (762/1732) 2018/10/22 11:40 回答No.3 (1) から P^2 - |a|^2 = |b|^2*t^2 + 2(a・b)*t を導いたあと、右辺にて t^2 の係数 = |b|^2 が零の場合 ((2)) と、非零 (非零かつ非負) の場合 ((3)) に分けて判断してますネ。 (2)の場合; |b|^2 = 0 → P^2 - |a|^2 = 2(a・b)*t なので、「すべての実数に対し」右辺が非負になるのは (a・b) = 0 のケースのみ。 → P^2 - |a|^2>0*t^2 = 0 (3)の場合; |b|^2>0 → P^2 - |a|^2>|b|^2*t^2 + 2(a・b)*t = |b|^2*t*{ t+ 2(a・b) } らしい。 (a・b) が非零だと、右辺は t = 0 と t = -2(a・b) の相異なる二つの零点をもち、否応なく正負に分かれる。 「すべての実数に対し」右辺が非負であるのは (a・b) = 0 のケースのみ。 → P^2 - |a|^2>|b|^2*t^2 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 kiha181-tubasa ベストアンサー率47% (642/1358) 2018/10/22 11:34 回答No.2 最後は2次関数や絶対2次不等式の問題に帰着するのですね。手書きの回答を画像にして貼付します。 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 asuncion ベストアンサー率33% (2127/6290) 2018/10/21 23:34 回答No.1 ベクトルの矢印は省略します。 |b|^2やa・bは単なる数ですので、 mt^2 + 2nt = 0 というtの2次方程式がt軸との交点を1点だけ持つ(※1)かあるいは全く持たない(※2)かということです。 ※1は判別式 = 0です。※2は判別式 < 0です。よって判別式 ≦ 0となるような m, n(実際はnだけです)の範囲を求めればよいです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルの内積に決まりはあるのでしょうか? こんばんは。 ベクトルの問題を解いていて、 問題 点Oを位置ベクトルの基準とし、2点A(a→)、B(b→)によって決まる次の図形ベクトルの方程式を求めよ。ただし3点O、A、Bは異なる点で、一直線上に無いものとする。 (1)点Oを中心とし、点Aを通る円の、点Aにおける接線 解答 求める接線上の任意の点をP(p→)とすると、点Aを通り、OA→が法線ベクトルである直線だから、OA→・AP→=0 a→・(p→-a→)=0 という問題なのですが、解答で内積を使っていて、 OA→・AP→=0とありますが、これは始点や、ベクトルの向きにこだわりがあるのでしょうか? AO→・AP→=0、というように始点をそろえると答えがかわってしまいますよね。。。 よろしくおねがいします!!! 空間ベクトルの内積で・・・ 数研出版の新課程スタンダート数学II+Bの問題なのですが、詳解がなく解答できずに困っています。 → → → 128 3つのベクトルa=(x,1,2)、b=(-1,y,0)、c=(1,-√2,z)がある。 → → → → → aとbとは垂直、aとcとは120°の角をなし、cの大きさは2である。x、y、zの値を求めよ。 という問題です。 途中式があると嬉しいですが、どのような手段で解けばいいか順を追って説明してくれても助かります。 よろしくお願いします。 ベクトル 内積 座標原点Oを中心に半径rの円がある。円周上に2点P(x1, x2), Q(x2, y2)がある。 x1x2 + y1y2 = 0であるとき,内積OP・PQを求めよ。 解答をよろしくおねがいします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトルの内積 △ABCの外心Oがあります。ベクトル2AOの点をO′とする。 このとき ベクトルAO′・ベクトルAB=|AB|二乗 の=が成立する意味が わかりません。 説明がわかりにくくてすいません。わかる方教えてください。 ベクトルの内積について… こんばんは。 数Bでどうしてもわからないことが あるのです… ベクトルの内積のところなんですが、 → → → → a・b=|a|・|b| ・cosθ ↑の式ではなぜcosθを使うのですか? sinθでもtanθでもなくcosθを使う 決定的な理由ってなんでしょう?? 高2でもわかる程度でご説明お願いします↓ ベクトルの内積なのですが・・ ベクトルの内積の説明文に「 → → → → → → a ・b=|a||b|cosθ である。aとb のなす角をθとすると-1≦cosθ≦1であるから → → → → → → -|a||b|≦a・b ≦|a||b| すなわち → → → → |a・b|≦|a||b| が成り立つ」とあったのですが、どういうつながりでいきなり「成り立つ」ということになったのかわかりません・・ 教えてください!! 宜しくお願いします・・!! ベクトルの内積って何? 角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。 2つのベクトルの内積を求めよ? 次の2つのベクトル→a,→bの内積を求めよ。 (1)→a(1,3,-2) →b(3,-2,-2) (2)→a(-1,5,3) →b(4,-2,1) という問題があったのですが、わからなかったので答えを見たところ 計算式が→a・→b=|→a||→b|cosθと書いてあったのですがこのcosθがどこからくるのかわかりません。。。教えてください。 ベクトルの内積について 3点A,B,CがOを中心とする半径1の円周上にあり、 → → → → → OA+√2OB-OC=0 を満たしている 1)内積OA・OBの値を求めよ この問題の解き方を教えて下さい。 私自身が考えたのは、それぞれ、OA=、OB=、OC=、になおして、cosθを求めてみたのですが止まってしまいました。 よろしくお願いします。 ベクトル・内積 a→≒0→,b→≒0→ について p→=a→+tb→(tは実数)の大きさが最小となる、a→とb→のなす角がθのとき|p→|の最小値をθを用いて表せ。という問題で、 ~~~~0°≦θ≦180°のとき sinθ≧0だから |P→|^2=|a→|^2+sin^2θ ⇔ |P→|=|a→|+sinθ と書いてあったんですけど、なぜ >0°≦θ≦180°のとき sinθ≧0 を考える必要があるのでしょうか?? ベクトル 内積 正六角形ABCDEFにおいて、AB=a BC=bとするとき、次の問に答えよ。 (↑AB、aなどの上には→があります。) (1)AC、ADをa、bで表せ。 (2)AC・AD=1のとき、a・bを求めよ。 という問題で、 (1)はAC=2a+b AD=2a+2bと答えが出せたのですが、 (2)が全くわかりません。 誰か教えて下さい。 ベクトルの内積 ベクトルの内積について質問です。 ある問題で、 AB→=x→-y→ OM→=y→-x→ AB⊥OMのとき AB・OM=0より |x|^2-2x→・y→+|y|^2=0 となっているんですけど、これって普通に展開していますよね? 内積と掛算って一緒じゃないはずなのに普通に展開しても良いのでしょうか? a→・b→=|a→||b→|cosθを用いて出したのならこのときのcosθの値はどこにいったのでしょう? わかる方教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトルの内積 質問です。 ある問題を解いていて aベクトル・bベクトル=cベクトル・bベクトルという値が出て、 │bベクトル│=1 がわかっていてcベクトルを出したかったので (aベクトル・bベクトル)bベクトル=(cベクトル・bベクトル)bベクトル とやってしまってbベクトルの2乗ができると考えてしまって aベクトル=cベクトルとなると考えてしまい 見事に外し、先生に聞くとbベクトルをかけても何もできない と言われたのですが何故なのかわかりません。 自分が内積の意味を分かっていないだけでしょうがよろしければ 何故なのか教えてください。 ベクトルの内積 問題:二つのベクトルの内積を(a,b)と書くとしよう。つぎの三式は同等であることを示せ(困難ならa,b∈R^2(←二乗)のケースで証明せよ) 1)(a,b)=a’,b 2)(a,b)=||a|| ||b|| cosθ(θはベクトルa,bに挟まれた角度 3)(a,b)=1/2(||a||^2+||b||^2-||a-b||^2) データ添付うまくできなかったのでここに直接書きました。^2は二乗のこ とです。 実は一時間後にテスト…ダメもとで回答待ってます(;_;) 位置ベクトル ベクトルと図形 この問題が分かりません。どなたか説明してください。お願いします、、! (解答は長くて、写真に入れると文字が見えなくなるので貼れませんでした) 答えは2/5≦t≦1です。 ベクトルの内積 失礼します。どうしてもベクトルの問題でわからないところがあるので質問します。 △OABにおいて,OAベクトル=aベクトル,OBベクトル=bベクトルとする。 |aベクトル+bベクトル|=2√3, |aベクトル-bベクトル|=2, (aベクトル+bベクトル)×(aベクトル-bベクトル)=2であるとき。 |aベクトル|=? |bベクトル|=? ∠AOB=シーターとすると、cosシーター=? △OABの面積は=? 途中式の解説をお願いいたします。 ベクトルの内積と成分の問題で。。。 aベクトル=(2,1,2),bベクトル=(0,1,1),cベクトル=(1,2,0)である。 この問題小問1でeベクトル=(2/3,1/3,1/3)を、 小問2でfベクトル=(2/3,-2/3,-1/3)を出しました。 それで小問3なんですが、 gベクトル・eベクトル=0,gベクトル・fベクトル=0,|gベクトル|=1を満たすgベクトルのうち、cベクトルとの成す角が鋭角なものを求めよという問題です。 gベクトル=(1/3,2/3,-2/3)が解答なのですが、どうして gベクトル=(1/3,2/3,2/3)がだめなのかよく分かりません。 おそらく「cベクトルとの成す角が鋭角なものを」というところがポイントだとおもうのですが、お分かりの方、ぜひ教えてください! ベクトルの内積の求め方について 先日ベクトルを習いました。 そもそも三角関数の時点でつまづいていますが 授業が普通の授業では無いので 復習をする時間も無ければ、それまでにつまづいていた中学箇所の復習もできず この状態でベクトルの内積の求め方でつまづくのは当たり前なのですが 質問させていただきます。 三角関数ができないとベクトルの部分は難しいというのは重々承知の上ですので 三角関数を先にやってから等々の回答はご遠慮させていただきます。 問題は [A]=2[i]+3[j]-[k] [B]=[i]-3[j]+2[k]のとき 内積[A]・[B]を求めなさい。 []は全てベクトルです。 で、 その前に内積の求め方を [A]・[B]=|A||B|cosθ と習っており この式の意味も分かっていたのですが、 (例えるなら1+5=2+3ということですよね) この問題を解きなさいって言われた時に それまでで、色々分からないことだらけで、 どうしよう、と焦ってしまい 上記の求め方の式を例えると3=1+2という感じに勘違いしてしまいました。 答え合わせの時に、なんで、こんな勘違いをしたんだろうという事は思いました。 ただ、係数だけを掛け算するというのは分からなかったので、 単純に両者を掛けたとしても、答えは間違っていたと思います。 なので本来は普通に両者を掛ければいいのですが 勘違いしてしまったので、両者の絶対値を掛けて、cosθを掛ける?という解き方をしたのですが 式が上手く組み立てられず私は下記のような解き方をしました。 (そもそも三角関数分からないので、cosθをどのような形で使えばいいかが分かりませんから、こちらの式でも答えには行き着かないので、結果|A||B|の計算というような感じです。 絶対値は係数の2乗の平方根ということは教わったので 2^2+3^2-1^2 1^2-3^2+2^2 =√12 √-4 =-√48 ちなみにですが、|A||B|の計算と考えたら、上記の式はあっていますか? 見て分かるかと思いますが、前半が|A|で後半が|B|です。 その間にスペースを置いたのは、ノートにもそう書いてます。 その間に入れる符号等が分からなかったのでそうしました。 ただ√12と√-4は掛け算なので、その部分には×を入れても良かったのですが、 それまで符号を入れなかったので、入って無いという感じです。 符号が入ってない時点で式としておかしいのは分かっていますが 書き方が分からなかった物で |A||B|だとするならば、掛け算ですが、前半と後半それぞれに()をつけて ×を間に挟むと、展開みたいなかけ方になるからおかしいよなと思い書けませんでした。 |A||B|cosθは私は解けないので |A||B|と見た場合に、上記解き方は合っていますか? この場合、符号をどういうふうに書けばいいのかも教えて欲しいです。 また、間違っている場合は、どう間違っているか教えていただけると助かります。 ベクトル 内積計算 以下ベクトルの話でお願いします。pの位置ベクトルを知りたいのですが… 3([AP]の2乗)-AP*AB-2AP*AC=0 ⇔AP(3AP-AB-2AC)=0 ⇔3AP=AB+2AC ⇔3AP-AB=2AC ⇔[3AP-AB]=[2AC] ⇔[AP-1/3AB]=K(定数だとします) なのでAPと1/3ABの距離は一定値Kを半径とする円 以上が私の解答なのですが、間違っているようです。 どなたかご指摘願います。 ベクトルの問題です。 (内積)>_< (1)|a→|=2 |b→|=3、|c→|=4 a→+b→+c→=0→でb→とc→のなす角をΘとするとき CosΘを求めよ。 (2)二つのベクトルx→とy→が直交し、 |x→|=1、|y→|=3である。α→=2x→ーy→とβ→=x→+py→が直交するような実数pの値と、|α→|、|β→|を求めよ。 この問題解けませんでした。 (1)は bとcのなす角をΘとするとき と書いてあるのでCosΘ=a×b/|a||b| の公式を使う問題だとおもいました。 それぞれ代入していこうと考えましたけど |a|と|b|のほかに|c|もあるので、 代入は全部できません。 まず、|a||b|を代入して、a×bの部分は|a| =a?と考えて、2を代入してよいのでしょうか? そうするとCosΘ=2×3/|2||3|となりますけど。。これだと、違います>_< どなたか教えてください。 (2)は 直交する条件は、a×b=0もしくはa1b1+a2b2=0 ですので、題意に書いてある|x→|と|y→|を いまこれは、”大きさ?”を表してる意味なので ”成分表示?”に変更して式をつくるのでしょうか?? まだ、大きさと成分表示とか色々ごちゃごちゃしてて はっきりしません>_< そのあとは、求まったxとyを用いて、題意のα=2x-yのxとyにその値を代入して行く~。。って流れでしょうか??>_< 結局良く解りませんでした、 どなたかベクトルの詳しい方、丁寧に教えて下さい お願いします。。 あと、上の説明とか、ベクトルの公式とかで、×を使いましたけど、点というのが記号でなかったので、×を使いました>_< 意味が違うと昔習いました。。 宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など