• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:英語訳を作ってください。)

英語訳:Rを複素平面の連結領域とし、HをHilbert space...

このQ&Aのポイント
  • R is a connected domain in the complex plane, H is a Hilbert space, and T(λ) (where λ belongs to R) is a closed operator on H with a non-empty resolvent set. The set of operators {T(λ)}_(λ∈R) is called an analytic family in the sense of Kato if it has the following properties.
  • For each element λ0 in R, there exists an element z0 in ρ(T(λ0)) such that for all λ in the vicinity of λ0, z0 is an element of ρ(T(λ)) and (T(λ)-z0)^(-1) is an operator-valued analytic function of λ near z0.
  • In other words, the set of operators {T(λ)}_(λ∈R) is analytically dependent on the parameter λ, and for each λ0, there exists a corresponding element z0 that satisfies certain conditions.

質問者が選んだベストアンサー

  • ベストアンサー
  • SPS700
  • ベストアンサー率46% (15297/33016)
回答No.1

Let R be the connected region of complex planes, let H be Hilbert space, and let T(λ) (where λ is an element of R) be the closed operator on H with a resolvent set which is not an empty set. When it contains the following property, {T(λ)}_(λ∈R), an accumulation of operators, is called "analytic family in the sense of Kato." The element z0, corresponding ρ(T(λ0)), exists for each element λ0 of :R. For all λ sufficiently close to λ0, z0 is a element of ρ(T(λ)). (T(λ)-z0)^(-1), when close to z0, is an operator valued analytic function of λ.

sonofajisai
質問者

お礼

素晴らしい翻訳、ありがとうございました。

すると、全ての回答が全文表示されます。

関連するQ&A