- 締切済み
運動方程式って線形ですか
何と言っていいかよくわからないのですが、多自由度系の普通の運動方程式 [M]x" + [C]x' + [K]x = f(t)があります([]はマトリクス)。 自由振動は外力ゼロの状態をいうのでf(t)=0として求めた固有値が固有角振動数及び減衰になります。この固有値が非線形パラメータだと書いてあるサイトがありますが意味が分かりません。 通常こういった形の式は2階線形の微分方程式と言われるので線形だと思っていました。しかし線形の条件はf(x+y)=f(x)+f(y)、c・f(x)=f(c・x)を満たすものとありますが、そうなっているのかどうかよくわかりません。 1.上記の運動方程式って非線形なのでしょうか? 2.上記の運動方程式が線形か非線形は「Cマトリクスがゼロの場合」「MKマトリクスの線形結合で表せる場合」「CマトリクスがMKマトリクスの線形結合で表せない場合」の3ケースで異なるのでしょうか?
- みんなの回答 (2)
- 専門家の回答