2次方程式で根号内が完全平方
2次方程式の解の公式で、根号内が完全平方でn>0としてn^2とおける理由がわからないので質問します。
4けたの整数で、その下2けたの数と上2けたの数との和の平方と等しくなるものを求めよ。という問題があって、
4けたの整数の上2けたの整数をA,下2けたの整数をBとすると、4けたの整数は 100A+Bとかけるから、題意によって次の方程式が得られる。100A+B=(A+B)^2 展開してAについて整理すると A^2-2(50-B)A+(B^2-B)=0 Aについて解けば、
A=50-B±√{(50-B)^2-(B^2-B)}=50-B±√(50^2-99B)・・・(1) Aは整数だから根号内は完全平方で、ここからがわからないところです。これをn^2(n>0)と置けば、・・・自分はn^2=±nだから(n>0)となる理由がわからないのです。B≧0,√n^2=|n|,Aについての2次方程式に対して、解と係数の関係など試してみたのですが、(n>0)とする理由、n≦0を除ける理由がわかりません。どなたかn>0とできる理由を教えてください。
解答のつづきは、n^2=50^2-99Bより 99B=50^2-n^2・・・(2)
∴ 3^2*11*B=(50+n)(50-n)ゆえに右辺は11の倍数となり 50+n,50-nの一方は11の倍数になる。50+nが11の倍数で、55,66,・・・,99のときのnの値をあげ、50-nが11の倍数で、44,33,22,11のときのnの値をあげ、(2)や(1)に代入し適当な整数になるものを選びます。答えは2025,3025,9801です。
お礼
ありがとうございます。