ベストアンサー 重積分 2014/06/10 09:29 ∮∮(D) y/(x^2+y^2)dxdy D={(x,y)|0≦x≦y≦4} よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Ae610 ベストアンサー率25% (385/1500) 2014/06/10 19:45 回答No.1 D={(x,y)|0≦x≦y≦4} ∫∫[D]{ y/(x^2+y^2)}dxdy = π 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 重積分 次の値をもとめてください (1)∬D x^2dxdy,D:(x-1)^2+y^2<=1,0<=y (2)∬D logx/y^2dxdy,D:1<=x<=2,1<=y<=x (3)∬D (x^2+y^2)dxdy,D:x+y<=1,0<=x,y (4)∬D √4x^2-y^2dxdy,D:0<=y<=x<=1 (5)∬D dxdy/(1+x^2+y^2)^2,D:(x^2+y^2)^2<=x^2-y^2 途中計算も教えてください。 すいませんが至急おねがいします。 重積分がわかりません。 (1)∫∫xy dxdy, D={(x,y)|x^2≦y≦√x} (2)∫∫x/(x^2+y^2+1) dxdy, D={(x,y)|x^2+y^2≦1.x≧0,y≧0} (3)∫∫(x+y)dxdy,D={(x,y)|y^2≦x≦y} (4)∫∫log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4} 重積分がわかりません。 (1)∫∫xy dxdy,D={(x,y)|x^2≦y≦x+2} (2)∫∫1/√1-x^2-y^2dxdy,D={(x,y)|x^2+y^2≦1} (3)∫∫x(x+y)dxdy,D={(x,y)|x-1≦y≦1-x, x≧0} (4)∫∫xy^2dxdy,D={(x,y)|x^2+y^2≦1,x≧0,y≧0} 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 2重積分について (1) ∬D x^2dxdy ただしD: x+y≦2 x≧0 y≧0 (2) ∬D sin(x+y)dxdy ただしD: 0≦x≦π/2 x≦y≦π-x (3) 極座標を使って∬D ydxdyを求めよ。 ただしD:y≧0 1≦x^2+y^2≦4 この問題がわかりません。 変数変換すると思うのですがどの用にしたらいいのでしょうか。 2重積分 (1)∫(-∞→∞)∫(-∞→∞) x^2*e^-(x^2+y^2) dxdy (2) ∬[D] r^(-1) dxdy D={(x,y)|x^2+y^2≦R^2} このような問題なんですが、いまいち分からなくて困ってます… この計算について、ぜひ教えてください。 お願いします!! 重積分 複素数平面においてP=y^3、Q=x^3、D={z||z|<1}とする ∫∫D (∂Q/∂x - ∂P/∂y)dxdy =3∫∫D (x^2 - y^2)dxdy を求めたいのですが求め方を教えてください 重積分 次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。 2重積分のやりかた いつもお世話になっています。 このような問題の解決する指針をどなたかご教示下さい。 ∫∫[D] dxdy/1+x+y D:x>=0,y>=0,x+y<=1 の値を求めよ (1) Dの使い方がわかりません 純粋にx:[0->1]&y:[0->1]と言うことでしょうか? (2) ∫(1+x+y)'/(1+x+y) dx を考えて x:[0->1]を代入し、 さらにその結果をyについて積分し y:[0->1]を代入するのでしょうか それとも、 ∫∫(1+x+y)'/(1+x+y) dxdy を ∫ln(1+x+t)dy として、その結果に x:[0->1]を代入し、y:[0->1]を代入するのでしょうか 二重積分について ∬(x^2-y^2)e^((x-y)^2)dxdy D={(x,y) 0≦x-y≦2,0≦x+y≦4} お願いします。 二重積分の問題が分かりません。 二重積分の問題が分かりません。 (1)∬[D] xy/(x^2+y^2)^3 dxdy D={(x,y)|0≦x≦∞,0≦y≦∞} (2)∬[D] e^-4x^2+4xy-17y^2 dxdy D={(x,y)|-∞<x,y<∞} 以上の二問なのですが、解き方が分からず困っています。 どなたかご教授お願いします。 二重積分 ∬D (xy-y) dxdy [D:(x-1)^2+(y-1)^2≦1]です。 極座標での変換の仕方がわからなかったので、:x-1=X、y-1=Yなんて置いてみたりしましたがうまくいきません。 明日テストなんです; お願いします。 どう解けばいいのですか 2重積分 ∬[D]√(1-x^2)dxdy D: x^2+y^2≦1, x≧0, y≧0 詳しい解説お願いします。 特に2重積分を累次積分に変換するときの、xとyの範囲がわかりません。 重積分 ∬D(x^2/1+y^2)dxdy D=[0,1]×[0,1] この重積分を求めてください 2重積分 2重積分の問題が解けないです ∫∫D x/(x+y)^2dxdy (1≦x≦2, 0≦y≦1) 答えはlog3/2でした 解説をお願いします 2重積分 ∬D log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4}を積分しなさい…という問題です。極座標の変数変換を使うのはわかるのですが、どう計算すればいいかわからなくなってきました。 x=γcosθ,y=γsinθをxとyの範囲にそれぞれ代入しますよね。そこからどうすればいいのですか? 2重積分の解き方教えてください 2重積分の時方教えてください。よろしくお願いします。 写真の(8)の解き方を教えていただきたいです。 答えは教科書にlog2 -3/4と載ってましたが、解き方がわからないので 途中式を教えていただくとありがたいです。 ∫∫[ ,D] log(x+y)dxdy , D={(x,y):0≦x≦1, 0≦y≦x)} 2重積分 2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。 2重積分の問題教えてください! Dを()内の不等式で表される領域とするとき、次の2重積分の値を求めよ。(領域Dも図示せよ。) ∫∫[ ,D]sin(2x+y)dxdy (0≦x≦π/2, x≦y≦2x) 2重積分の問題なのですがなかなか答えにたどり着けずにいます。誰か教えていただけないでしょうか? ∫∫[ ,D]sin(2x+y)dxdy =∫[π/2,0]{∫[2x,x]sin(2x+y)dy}dx ここからが進みません。宜しくお願いいたします。 2重積分 次の2重積分の値を極座標に変換して求めよ。Dは()内の不等式の表す領域とし、aは正の定数とする。 (1) ∬D xdxdy (x≧0、y≧0、x^2+y^2≦a^2) (2) ∬D log(x^2+y^2)dxdy (4≦x^2+y^2≦9) 広義重積分です 次の広義重積分の解き方を教えてください。 ∬D(1-x-y)dxdy D:x≧0,y≧0,x+y<0 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など