ベストアンサー 2重積分 2013/12/14 12:50 ∬[D]√(1-x^2)dxdy D: x^2+y^2≦1, x≧0, y≧0 詳しい解説お願いします。 特に2重積分を累次積分に変換するときの、xとyの範囲がわかりません。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2013/12/14 13:44 回答No.1 >∬[D]√(1-x^2)dxdy >2重積分を累次積分に変換するときの、xとyの範囲がわかりません。 xを固定(0<x<1)するとy^2≦1-x^2, 0≦y≦√(1-x^2) したがって x,yの範囲は[x:0,1],[y:0,√(1-x^2)]となります。 =∫[x:0,1]dx∫[y:0,√(1-x^2)]√(1-x^2)dy =∫[x:0,1]√(1-x^2)dx∫[y:0,√(1-x^2)]dy =∫[0,1]√(1-x^2){[y][0,√(1-x^2)]}dx =∫[0,1]√(1-x^2)√(1-x^2)dx =∫[0,1](1-x^2)dx =[x-(1/3)x^3][0,1] =1-(1/3) =2/3 質問者 お礼 2013/12/14 16:57 詳しい解説ありがとうございます。 わかりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 2重積分 2重積分の問題が解けないです ∫∫D x/(x+y)^2dxdy (1≦x≦2, 0≦y≦1) 答えはlog3/2でした 解説をお願いします 2重積分 次の2重積分が求められません。 (1)∬1/(x+y) dxdy 範囲:0≦x≦2,1≦y≦2 (2)∬(xy)/(x+y) dxdy 範囲:1≦x≦2,0≦y≦1 二重積分と積分計算 ∬x^2dxdy 積分範囲D={(x,y) | 0≦x , 0≦y , √(x)+√(y)≦1} 上記の二重積分を解こうとしているのですが、 積分範囲Dをグラフ化し 0≦x≦1 , 0≦y≦{1-√(x)}^2 と解釈して ∫[x{1-√(x)}]^2dx 積分範囲 0≦x≦1 と、ここまで計算したところで詰まってしまいました。 そこで質問なのですが、 1)ここまでの考え方は正解ですか? 2)このあとの積分計算法を教えてください。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 2重積分の積分順序変更 2重積分の積分順序変更 「∫[0→2]∫[0→2x](f(x,y))dxdy の積分順序を変更せよ」 という問題の解説をどなたかしていただけませんでしょうか。 ∫[0→2x]∫[0→2](f(x,y))dxdyであるのならば解けるのですが、 ∫[0→2]∫[0→2x](f(x,y))dxdy(積分順序変更前のxの範囲が0≦x≦2x?)がわかりません。(誤植じゃないかと疑ったほどで…) お手数をおかけしますが、よろしくお願いします。 二重積分について。 x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。 2重積分問題の解法を教えてください。 いつも積分を解きますが、今回2重積分の解法お願いします。 質問はそのとうりです。 積分範囲Dを図示し、次の2重積分の値を求めよ ∬D y log x dxdy D= {(x,y) 0< y < x^2 , 1 < x < e } 2重積分 次の2重積分の値を極座標に変換して求めよ。Dは()内の不等式の表す領域とし、aは正の定数とする。 (1) ∬D xdxdy (x≧0、y≧0、x^2+y^2≦a^2) (2) ∬D log(x^2+y^2)dxdy (4≦x^2+y^2≦9) 2重積分 ∬D log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4}を積分しなさい…という問題です。極座標の変数変換を使うのはわかるのですが、どう計算すればいいかわからなくなってきました。 x=γcosθ,y=γsinθをxとyの範囲にそれぞれ代入しますよね。そこからどうすればいいのですか? 重積分 次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。 重積分 この問題の解き方が分かりません。助けてください。 不等式 x^2+y^2<=4a^2, x^2+y^2>=2ax, x>=0 の表す領域をDとしたとき、極座標に変換して次の2重積分を求めよ。 ただし、aは正の定数とする。 ∫∫ √(x^2+y^2) dxdy パイ/96 2重積分の問題教えてください! Dを()内の不等式で表される領域とするとき、次の2重積分の値を求めよ。(領域Dも図示せよ。) ∫∫[ ,D]sin(2x+y)dxdy (0≦x≦π/2, x≦y≦2x) 2重積分の問題なのですがなかなか答えにたどり着けずにいます。誰か教えていただけないでしょうか? ∫∫[ ,D]sin(2x+y)dxdy =∫[π/2,0]{∫[2x,x]sin(2x+y)dy}dx ここからが進みません。宜しくお願いいたします。 2重積分 2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 広義重積分です 次の広義重積分の解き方を教えてください。 ∬D(1-x-y)dxdy D:x≧0,y≧0,x+y<0 2重積分の問題です 次の2重積分の値を極座標に変換して求めよ。Dは()内の不等式の表す領域とし、aは正の定数とする。 (1) ∬D xdxdy (x≧0、y≧0、x^2+y^2≦a^2) (2) ∬D log(x^2+y^2)dxdy (4≦x^2+y^2≦9) よろしくお願いします。 二重積分の問題が分かりません。 二重積分の問題が分かりません。 (1)∬[D] xy/(x^2+y^2)^3 dxdy D={(x,y)|0≦x≦∞,0≦y≦∞} (2)∬[D] e^-4x^2+4xy-17y^2 dxdy D={(x,y)|-∞<x,y<∞} 以上の二問なのですが、解き方が分からず困っています。 どなたかご教授お願いします。 2重積分の計算方法 下に書いた2重積分の方法を教えてください。 0≦x≦1, 0≦y≦x^2 の範囲で、 ∬e^(y/x)dxdy e っていうのはネイピア数です。 何題も悪いんですが… a≦x≦b, c≦y≦d の範囲で、 ∬xy sin(x^2+y^2) dxdy どうかわかりやすい説明をお願いします。 円と直線の交差する範囲(重積分) 重積分の範囲が、円の方程式と1次関数になっている場合の考え方をご教授願います。 ∬ y dxdy 積分範囲 x^2+y^2≦4 かつ y≧2-x x^2+y^2≦2^2 より、原点を中心とした半径2の円が考えられます。 極座標でx=rcosθ, y=rsinθとすれば、0≦r≦2 , dxdy=r drdθ 又、y=2-x のグラフは点(0,2)と点(2,0)で円周と接するので、 積分範囲は半径2の円の第一事象の部分 [0≦θ≦π/2かつ0≦r≦2] から [0≦x≦2かつ0≦y≦2-x] を引いた範囲が積分範囲と考えて良いのでしょうか? つまり、∫[0 2]dr∫[0 π/2] rsinθr dθ-∫[0 2]dx∫[0 2-x] y dy の式に累次積分できるんですかね? お手数をお掛けいたしますが、ご指導願います。 広義二重積分の問題です。教えてください 広義二重積分の問題です。教えてください、よろしくお願いします。 次の広義積分を求めよ。 問1、∫∫D 1/(1+x^2+y^2)^a/2 dxdy,D={(x,y):y≧0} 問2、∫∫D log(x^2+y^2) dxdy,D={(x,y):0<x^2+y^2≦1} 広義重積分 広義重積分の問題が分かりません。 (1)∬(e^-x-y)dxdy D={(x,y)|x≤0,y≤0} (2)広義重積分が収束するための定数r ∬1/(x+y)^rdxdy D={(x,y)|1≤x,1≤y} どちらか一方だけでもよいので教えてください。よろしくお願いします。 2重積分の問題教えてください! D={(x,y)|x^2+y^2≦2x+2y-1} のとき、2重積分 ∫∫[D, ](xy-y)dxdy の値を求めよ。 (領域Dも図示せよ。) よろしく宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
詳しい解説ありがとうございます。 わかりました。