- ベストアンサー
円の問題
座標平面上に3点A(2,-2)B(1,3)P(t,0)(ただしt>0)が与えられている。y軸上に中心を持ちAとPを通る円をCとする。また、y軸上に中心を持ちBとPを通る円をC'とする。ただし、C,C'の中心は原点と異なるものとする。 (1)円Cの半径をr、中心のy座標をaとする。 r^2=a^2+4a+8 a=(t^2-8)/4 となる。したがって、PにおけるCの接線の傾きをtを用いて表すと アt/(t^2-イ)となる。 同様に、PにおけるC'の接線の傾きをtを用いて表すとウt/(ケコ-t^2)となる。 この問題の解き方を教えてください。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- Y_Narukami
- ベストアンサー率2% (3/118)
回答No.1
補足
教科書読んでも分からないからきいてるんです(;_;)