締切済み 夏休みの課題(数学) 2013/08/25 01:40 夏休みの課題でわからない所が あったので教えて下さい。 図のように、y=-2x+4のグラフ上に おいて2点A,Bの間を点Pが 動くとする。 (1)斜線で示した長方形の面積S をxで表せ。 (2)Sの最大値およびそのときの点P の座標を求めよ。 解説もよろしくお願いします! 画像を拡大する みんなの回答 (3) 専門家の回答 みんなの回答 Lady_osaka ベストアンサー率17% (98/576) 2013/08/25 06:53 回答No.3 面積Sは、長辺掛ける短辺だから S=x × y y=-2x+4だから S=(-2x+4)x 展開して S=-2x^2+4x あとはこの関数が上に凸な放物線であることを書いたうえで 頂点の座標を求めます。 高校知識であれば、微分して0になるxの算出です 中学校であれば重解になるxを求めることになります a(x-b)^2=0の形にします -2x^2+4x-S=0 判別式=0を使って 4^2-4×(-2)×(-S)=0 16-8S=0 S=2 よって 2=-2x^2+4x x=1 y=2 (1,2) いじょうです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 code0121 ベストアンサー率0% (0/0) 2013/08/25 02:21 回答No.2 Pのy座標をPが直線上という条件からx で表してみましょう。そうすると、図形の縦と横の長さをxで表せます。 2は、xの変域を求めましょう。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2013/08/25 02:08 回答No.1 なにがどうわからない? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 中学・数学の解説お願いします。 中学数学の問題です。娘に説明できないので解説のほど、よろしくお願いします。 ● 右の図のように、2つの関数 y=x²・・・(1) y=ax²(a<0)・・・(2)のグラフが、点(-2、0)を通りy軸に平行な直線とそれぞれ点A、Bで交わっている。Cは線分ABの中点であり、そのy座標は 1 である。また、Pは(1)のグラフ上を動く点であり、そのy座標は正である。次の問いに答えなさい。 (1)点A,Bの座標をそれぞれ求めなさい。 (2)a の値を求めなさい。 (3)△ACPの面積が6になるときのPの座標を求めなさい。 数学 一次関数のグラフについて この問題の解説をお願いします。 右の図の正方形PQRSで、点Pは直線y=2x のグラフ上の点でX座標が正になるようにとり、点Q はX軸上にとります。点Rの座標は(4,0)です。 この時、次の1~3の問いに答えなさい。 (1)点Pの座標を求めなさい。 (2)点Sの座標を求めなさい。 (3)2点Q・Sを通る直線の式を求めなさい。 数学の問題です。 3曲線C1:y=f(x)、C2:y=x^2、C3:(1/2)x^2のグラフが図のようになっている。曲線C2の上の点Pにおいて、y軸に平行な直線を引き、C3との交点をQ、Pにおいてx軸に平行な直線を引き、C1との交点をRとする。曲線C1、C2、線分PRの囲む図形の面積をS1、曲線C2、C3、線分PQの囲む図形の面積をS2とする。 (1)点Pの座標を(u,u^2)、点Rの座標を(v,f(v))とおいたとき、面積S1を定積分を含むuとvの式で表せ。 (2)点Pが曲線C2の上を動くとき、つねにS1=S2が成立する。このとき、関数f(x)を決定せよ。 (1)はS1=∫[0,v]f(x)dx+(2/3)u^3+vu^2になりました。 (2)でS2を計算するとS2=(1/6)u^3になってS1=S2で計算しましたがf(x)まで持っていけません。 詳しく解説していただけないでしょうか。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 夏休みの課題 数学の課題です。 答えは載ってましたがやり方が分かりません。 曲線y=4-x^2とx軸との交点を左からA,B,y軸との交点をCとする。XをAからCまでの曲線上の点として、XとBを結ぶ直線とy軸との交点をYとする。Xが曲線上をAからCまで動くとき、X、Yと頂点Oによって作られる三角形OXYの面積Sの最大値を求めよ。 答え1 よろしくお願いします!! 中1数学 次の図のように,反比例y=12/xのグラフ(1)と,比例y=axのグラフ(2)が点A,Bで交わっています。点Aのy座標が3のとき,下の問いに答えなさい。(ただし,座標の1目もりを1cmとします) 1 点Bの座標を求めなさい。 2 x軸上の正の部分に点Cをとります。△ABCの面積が21平方cmになるとき,点Cの座標を求めなさい。 この問題の解説をお願いします。 新高1です。数学教えてください! 下の図のように、関数y=x2(xの2乗)のグラフと直線Lとの交点をP、Qとし、 直線Lとy軸との交点をRとする。 また点Pのy座標は16で、△OPRと△OQRの面積比は4:3である。 △OPQを、直線Lを軸として1回転させてできる立体の体積を求めよ。 解説お願いします>< ちなみに答えは 168√2 です。 頭悪いので出来るだけ詳しく解説していただけたら助かります>< よろしくお願いします。 図は↓です 東京書籍の新しい数学3で質問があります Y=4分の一x^2のグラフ上にx座標がそれぞれ-4、2となる点a,bをとりa,bを通る直線とy軸との交点を Cとします。点pがy=4分の一x^2のグラフ上の点であるとき 三角形ocpの面積が三角形oabの面積の2分の一になるときのpの座標を求めなさい。 中学数学の関数の問題の解説をお願いします。 関数の問題について、解説をお願いします。 いつもすみません。 今度は関数の問題についてどなたか解説を教えてください。 右の図の(i)はy=1/2x²、(ii)は原点Oを通る直線、(iii)は関数y=-2x²のグラフである。 点Aは(ii)、(iii)の交点、点Bは(i)、(ii)の交点であり、x座標はそれぞれ1、-4である。 点Aとy軸について対称な点Cとして、ABを対角線とする平行四辺形ACBDを作るとき、次の問いに答えよ。 (1)y軸上に、y座標が正の数である点Pをとる。△ABPの面積が平行四辺形ACBDの面積の半分になるとき、点Pのy座標を求めよ。 答え:4 (2)(1)で求めた点Pを通る直線のうち、平行四辺形ACBDの面積を2等分する直線の式を求めよ。 答え:y=2/3x+4 ※右の図とありますが、画像の図のことです。 すみませんが、よろしくお願いします。 緊急!!中二数学の問題教えてください!! 明日が実力テストなので 急いでます!! 図で、直線LはY=3分の2Xのグラフ、双曲線はY=X分のa(X>0)のグラフです。 この二つのグラフの交点AのY座標は2、また双曲線上にX座標が6になるように点Bをとります。 (3)点PをX軸上の正の部分にとり、△AOBと△AOPの面積が等しくなるとき、点PのX座標を求めなさい。 という問題です。 前の問題(1)(2)で aの値は6、 2点A、Bを通る直線の式はY=-3分の1X+3であることがわかっています。 どうがんばっても解けません泣 解説、解き方教えてください!! 図の画像はこちらです。 http://26.xmbs.jp/pb6.php?ID=qibon&c_num=47508&serial=1279921&page=a&page2=0&guid=on 数学の問題です 下の図でx軸上のx>0の部分に点Pをとる。△ABPの面積が40になるときの点Pの座標を求めなさい。 という問題です。詳しく解答、解説お願いします(>人<;) 見づらいので補足です。 直線はy=2x+6 曲線はy=1/2x^2 交点をA(-2,2) B(6,18) C(0,6)とします。 高1数学の問題 高1の問題なんですけど、お願いしますm(__)m 直線y=1/2X+1上の点P(X,y)からX軸に下ろした垂線の足をQとし、4つの点O(0,0)、A(0,1)、P(X,y)、Q(X,0)を頂点とする台形を考える。 (1)点Qの座標を(2,0)とするとき、台形の面積を求めよ。 (2)X>-2のとき、台形の面積SをXの関数で表せ。 (3)台形の面積をS(X)とするとき、S(X)のグラフをかけ。 式だけでいいです☆彡 画像とかあったらありがたいです!! よろしくお願いします。 受験生です。数学の問題がわからなくて困っています 数学の時間に出されたプリントの問題がわからなくて困っています。 もう中学校は卒業してしまい、先生にも会えなくなって、答えのプリントも配られていないので、答えがわかりません。家族に聞いても、わからないようで、困っています。 問題は、 図で、A、Bはそれぞれ関数y=-x+12のグラフとx軸、y軸との交点、Cはx軸上の点である。Pは線分OB上の点、Qは直線CPと線分ABとの交点である。また、Sは線分OA上の点で、四角形CSQRは長方形である。点Cの座標が(-3、0)のとき、次の問いに答えなさい。 問い 四角形CSQRが正方形になるときの点Sのx座標を求めなさい。 この問いは四つ目で、その前に出てきた三つの問いとその答え↓ ※私が求めた答えなので、合っているかはわかりません。 (1)CP=PQとなるときの点Qの座標を求めなさい。 A,(3、9) (2)点Aを通り、直線BCに平行な直線の式を求めなさい。 A,y=4x-48 (3)三角形BQPの面積が三角形BCPの面積の2倍になるとき、直線CPの式を求めなさい。 A,y=3x+9 もし答えてくれる方がいれば、よければ求め方も教えてくださるとうれしいです。 よろしくお願いします。 図は画像を見てください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学I 二次関数で教えて下さい。 理解できない箇所があるので教えて下さい。 問題 直線y=1/2x+2上のx<0、y>0の部分に点Pをとり Pからx軸、y軸におろした垂線の交点をそれぞれR,Qとし直角三角形PRQを作る。 三角形PRQの面積の最大値を求めよ という問題です。 本来図つきなんですが、文章だけでご理解いただけますでしょうか? この解説でR(-x.0)(0<x<4)とおくと P(-x.-1/2x+2)とあります。 このPのy座標の-1/2xが理解できません。 なぜ-が付くのでしょうか? どうか教えて下さい。 二次方程式の応用 図のように、点A(9,0)で交わる二直線l,mがある。lはy=-x+9、mはy=-1/3x+3のグラフである。y軸に平行な直線とl,mとの交点をそれぞれP,Qとする。△PQAの面積が3のときの点Pの座標を求めなさい。ただし、Pのx座標は9より小さいものとする。 これの方程式は 1/2(9-x){(-x+9)-(-1/3x+3)}=3 であっていますでしょうか。 解説をしていただきたいです。 関数 図のように.関数y=1/4x^2のグラフ上の.x座標が2である点をP. x座標が正でy座標が4である点をQとし.y軸上の点(0.4)をRとする. このとき.△PQRの面積を求めてください お願いします 高校数学 図形と方程式 XY平面上に、Y=-X^2+2で表される曲線CとY=-3Xで表される直線Lがある。 (1)CとLとの交点P,Qの座標を求めよ。 (2)C上の点RがPからQまで動くとする。三角形PQRの面積が最大になるときの点Rの座標を求めよ。 この問題だけがどうしてもわからず。。。orz 解説よろしくお願いします。 数学 関数 下の図の(1)、(2)、(3)は、それぞれ関数y=ax2、y=4、y=1のグラフである。 (1)と(2)の交点のx座標の小さい方からA、Bとし、(1)と(3)の交点のうちx座標の負の点をCとする。 (1) AB=8のとき、点Bの座標とaの値を求めよ。 また、このとき、点Cの座標と、直線BCの式を求めよ。 (2) (1)のとき、傾きが性の原点を通る直線(4)が、右の図のように(2)、(3)および線分BCと 交わる点をそれぞれP、Q、Rとする。 BP:CQ=1:2のとき、点Rの座標と三角形BPR の面積を求めよ。 解答よろしくお願いします。 中学数学 関数グラフの問題について 関数グラフの問題の解き方がわからないので質問いたします。 ●放物線y=x2と関数y=2x+3が2点A、Bで交わっている。点Aのx座標は-1、点Bのx座標は3である。この時、原点Oを通り、△OABの面積を2等分する直線の式を求めなさい。(添付の図をご参照ください) 答えは、【y=5x】とわかっているのですかどのように解くかがわかりません。解説をしていただければと思います。よろしくお願いいたします。 【数学の得意な方…!】 2つの放物線y=x^2…(1)とy=x^2+p^2…(2)がある。ただし、pは正の定数とする。 (2)の接線と(1)と交わる点をQ、Rとし、Q、Rにおける(1)の接線の交点をTとするとき、 (1)(2)上の接点Pのx座標をx=aとする。 Q、Rの座標をa、pで表せ。 ただし、Qのx座標がRのx座標より小さいものとする。 (2)△QRTの面積Sは一定であることを示せ。 なんだかさっぱりです…。 今日中に解ける方、いらっしゃいませんか(><) 解説付きでお願いしたいです! 数学 放物線 xy平面上の2つの放物線 C1:y=-x^2+4x C2:y=x^2-2xがあります 点P(x1.y1)がC1上を原点からC1.C2の原点とは異なる交点Aまで動くとき、三角形ABP(Bの座標は1.-1)の面積の最大値とそのときのPの座標を教えてください 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など