ベストアンサー 微分方程式 2013/03/05 22:28 (1-y^2)dx=y(1-x)dyの解のうち、解曲線が閉曲線となるような解を示す問題で 答えは(x-1)^2/a^2 +y^2=1 の楕円 でした。 導出を教えてください。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2013/03/05 23:37 回答No.2 (1-y^2)dx=y(1-x)dy 変数分離して dx/(1-x)=ydy/(1-y^2) dx/(x-1)=(1/2)(1/(y-1)+1/(y+1))dy 積分して ln|x-1|+C1=(1/2)ln|(y-1)(y+1)| ln(C2(x-1)^2)=ln|(y-1)(y+1)|,C2=e^(2C1)>0 C2(x-1)^2=±|y^2-1| C2(x-1)^2=y^2-1 or C2(x-1)^2=1-y^2 C2(x-1)^2=y^2-1(C2>0) …これは双曲線で閉曲線ではないので不適。 C2(x-1)^2+y^2=1 (C2>0)…これは楕円で閉曲線で適する。 C2=1/a^2(a>0)とおけば (x-1)^2/a^2 +y^2=1 (a>0) ← 答え 質問者 お礼 2013/03/07 22:19 丁寧にありがとうございました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) spring135 ベストアンサー率44% (1487/3332) 2013/03/05 23:10 回答No.1 (1-y^2)dx=y(1-x)dy より変数分離して dx/(x-1)=ydy/(y^2-1) 両辺積分して log(x-1)=(1/2)log(y^2-1)+c 右辺が思いつかなければ、微分して元に戻ることを確認してください。 Cは積分定数。条件に合わせて決める。 2log(x-1)-log(y^2-1)=2C (x-1)^2/(y^2-1)=C' (x-1)^2/C'=y^2-1 C'=-a^2とすると (x-1)^2/a^2+y^2=1 質問者 お礼 2013/03/07 22:19 ありがとうございました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式の解き方 1.y" - 2y' + y = x sinxの一般解を求めよ。 この問題で、一つの解の予想の仕方が分かりません。 2.(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3 dy/dx = p、((d^2)y/d(x^2)) = (dp / dy)p とおき、 y^2 * p *(dp /dy)= P^3 y^2 * (dp/dy) = P^2 変数分離をして 1/(p^2) dp = 1/(y^2) dy -(1/p) = -(1/y) + C 1/p = 1/y - C p = y - 1/C p=dy/dx = y + A (A = -1/Cとおく) 1/(y + A) dy = dx log|y + A| = x + B y + A =±e^(B + x) y = Ce^x - A となりましたが 答えはlog|y|=x + C1y + C2です。 間違っているところを指摘していただけるとありがたいです。 微分方程式について dy/dx=√yの解でx=0のときy=0を満たすものが無数に存在することを示せ。 …という問題についてですが、dy/dx=√yをいろいろと変形させたりしてはいるのですが無数に存在することの示し方がわかりません。 誰か解いてみていただけませんか? 1階の常微分方程式 この問題の解き方と答えが分からないので教えてください。 dx/dy=x/y+1の一般解を求めよ。 よろしくお願いいたします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式つまらなさすぎる(?)悩み (1) dy/dx=f(ax+by+c)のときax+by+c=zとおいて zに関する微分方程式を作れ。 (2) (1)を利用して、微分方程式dy/dx=x+y+1を解け。 この問題について質問があります。まず(1)についてですが、 答えが dz/dx=a+bf(z) でした。私はもっと変形できるのかと 思いずっと悩んでいました。でもこれが答えだったんです。 何をもって”微分方程式”というのでしょうか?また(1)の答えは これ以外にはあり得ないのでしょうか?例えばdxじゃなくてdy が入っていてもいいと思うし、なぜxが選択されたのか不明です。 次に(2)の解説の中で、x+y+1=zとおくと、(1)から dz/dx=1+z・・・(1) 1+z=0 は(1)の解である。・・・ となっていました。なんで1+z=0 が(1)の解になるのでしょうか? これはすなわちdz/dx=0 ということだと思うのですが何をもって この解が導かれたのかさっぱりです。脚注にも説明はありませんでした。 またf(z)がzと表記が変わったことにも違和感を覚えます。 回答よろしくお願いします。 非線形微分方程式の問題について 微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。 微分方程式 次の、微分方程式の一般解を求めよ。 (1-4x-3y^2+12xy^2)dy/dx=4 この解き方教えてください。 答えは y-(2/3)y^2=-log(x-1/4)+C です 微分方程式 (1+x^2)y"+1+(y')^2=0 解:Ax+(1+A^2)log(A-x)+B の解き方がわかりません。 dy/dx=Pとして (1+x^2)dp/dx+1+p^2=0 としたところ行き詰ってしまいました。 どなたかアドバイスお願いします。 微分方程式の問題 dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3 [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。 微分方程式 (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか? ダランベールの微分方程式 以下の問題がわかりません。 問. 次のダランベールの微分方程式を解きなさい。 y=2x(dy/dx)+(dy/dx)^2 答え. 3(x^2)(y^2)+4y^3=C(4x^3+6xy+C) C:任意定数 y=0 (特殊解) 質問は大きく2つあります。 1点目。 p=(dy/dx) と置いて両辺をxで微分し、解の公式を用いて式変形を行うと、以下の連立方程式となりました。 y=2px+p^2 3xp^2+2p^3=C この2式からpを消去すると答えが得られると思うのですが、 どのようにpを消去すればよいかわかりません。 2点目。 y=0 (特殊解) が何なのかわかりません・・・。 解答にはどのように記載して特殊解を求めればよいのでしょうか。 以上、2点の質問にお答え頂けるととても助かります。 お手数ですが、よろしくお願い致します。 微分方程式 (d^2y/dx^2)+2dy/dx+ay=0 (aはa>1なる定数)について以下の問に答えなさい。 (1)初期条件y(0)=1、y'(0)=-1を満たす解を求めんさい。 (2)前門で求めた解がy(π)=0を満たすような定数aの値を求めなさい。 (1)の解を求めたところ、 y=(e^-x)*cos(√(4a-4)/2)xとなりました。 そこで(2)なのですが 0=cos(√(4a-4)/2)πとし (√(4a-4)/2)=1/2としたところa=5/4となりました。 cos○π=0となるのは1/2πと3/2πがあると思うのですが ほかに考えられるものはあるのでしょうか?? 微分方程式に関する問題です。 (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) (1)f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 (2)因数分解を用いて、f(y) = 0のときの一般解を求めよ。 ********************************************* という問題です。 (1)についてはできましたが、(2)でどのように解けばよいのか分かりません。お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 初期条件のない微分方程式 d^2y/dx^2 - 5dy/dx+6y=x^2 これの一般解を求めよ。特解はy=ax^2+bx+c (a、b、c)定数の形である。 このような問題を聞かれたのですが 「初期値」とか「条件」って(条件:x=0のとき、y=1, dy/dx=1 など)なくても解けるんですか? はじめて見たので「え!?」ってなってる形なんですけど どなたか解き方を教えてください。 教えてください☆(微分方程式) (x+y)y'=2の一般解を求めよという問題が分かりません。左辺にyを集めて右辺にxを集めてy’をdy/dxにして解いてみたんですが、y'が二つ出来てしまってうまくいきません。誰か分かる方教えてください☆ 再び微分方程式の質問(2)です。 全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。 問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) ∫1/y(y-1)dy=∫2dx (2) ∫1/y(1-y)dy=∫2dx (3) ∫1/y(y+1)dy=∫2dx (4) ∫1/y(y-1)dy=∫1/2dx (5) (1)~(4)に正解はない。 問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数) (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数) (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1 (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0 (5) (1)~(4)に正解はない。 問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) 1/2log2 (2) 3/2 (3) log6 (4) 1/6 (5) (1)~(4)に正解はない。 以上、よろしくお願いいたします。 微分方程式 x*(dy/dx)+y=x*e^x[y(1)=-2] の一般解および[]内の条件を満たす解を教えてください。 お願いします。 微分方程式 (x-2y)+(2x-y)(dy/dx)=0[y(0)=2] の一般解を教えてください。 お願いします。 微分方程式について 分らない問題があるので誰かわかる方教えてください! dy/dx=-xyという問題で答えが y=Ce^-x^2/2 y'^2 -4y=0 で答えがy=(x-C)^2 y''=-a^2*y で答えがy=Acos*ax+Bsin*ax です。どれか一つでもいいんで過程を教えていただきたいんですが…よろしくお願いします! 微分方程式 dy/dx+y=x[y(0)=1] の一般解を教えてください。 お願いします。 2階線形微分方程式の解法 受験生です。 ずっと昔の大学入試問題です。答えがなく、悩んでいます。 d^2y/dx^2-(a+b)(dy/dx)+aby=0 (ただしdyやdxは微分演算子です) なのですが、おそらくa=bとa≠bとで分けるのだと思いますが、 両者ともどのようにして解けばよいのか分かりません。 解だけは載っていまして、 y=A*exp(ax)+B*exp(bx)とy=(Ax+B)*exp(ax) でした。 とりあえず私はa=bのときをやってみまして、 (d/dx-a)^2y=0と形式的に書き直して、 (d/dx-a)(dy/dx-ay)=0 とし、 (dy/dx-ay)=zとおいて ・(d/dx-a)z=0 ・(dy/dx-ay)=z を満たす解を探そうとしました。 上の方の式は直ぐにz=exp(ax)と出ましたが、 これを下の式に代入した後が分からなくなってしまいました。 勉強した範囲では、一階や二階の微分方程式の解は 一般解と特殊階の和で表せるということでしたが、それを元に 考えてみてもここから進みません。 質問は、以上の行き詰ってしまった所から先の解法と、 もうひとつの解であるy=A*exp(ax)+B*exp(bx)の導出方法です。 詳しい方、ご教授お願いできませんか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
丁寧にありがとうございました