ベストアンサー フーリエ級数 2013/02/07 20:37 この関数のフーリエ級数を求めよ。 この問題の考え方を教えて下さい。 f(x)=2x (0≦x<1) =2 (1≦x<3) =-2x(3≦x<4) f(x+4)=f(x) と定義したのですが答えと一致する 気配がありません。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ast0718 ベストアンサー率41% (35/85) 2013/02/09 06:12 回答No.1 フーリエ級数の計算はわすれてしまったので、公式を書いてもらわないと解けません(笑) それでも答えが合わない理由はなんとなくわかりました。 =-2x(3≦x<4) これが間違っています。これではx=4を入れるとy=-8になってグラフと整合しませんね =-2x+8(3≦x<4) にしたらどうでしょうか。 質問者 お礼 2013/02/09 14:44 ありがとうございます! y=-2xだと変ですね 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A フーリエ級数についてです。 フーリエ級数についてです。 区間[-π,π]で定義された関数f(x)=xで定義された周期2πの関数についてフーリエ級数の問題を解けという問題があるんですけど、この場合f(x)=xは周期2πなんでしょうか? 周期関数2πの定義は関数f(x)がf(x+2π)=f(x)を満たすときですよね? この定義にf(x)=xが当てはまるとは思えないのですが。 フーリエ余弦級数とフーリエ正弦級数について [0,2]で定義されたf(x)=x のフーリエ余弦級数とフーリエ正弦級数を考える際、f(x)は奇関数なので、フーリエ正弦級数を考えるのは理解できるのですが、フーリエ余弦級数を考えることが理解できません。どなたかご教授願います。 フーリエ級数 大学院試験の勉強をしていて、分からない問題があるので教えてください。自分はフーリエの勉強をしたことがないのですが試験まで時間がないのでお願いします。 f(x)=x (-π<x<-π),f(-π)=0,f(π)=0で定義される周期2πの関数のフーリエ級数を求めなさい。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム フーリエ級数に関して フーリエ級数に関しての質問です。 f(x)= 0 (π/2≦x<π) = cosx (-π/2≦x<π/2) = 0 (-π≦x<-π/2) についてフーリエ級数を求めました。 正しい答えは (1/π)+(cosx/2)-(2/π)Σ[n=1→∞]{(-1)^(n+1)/(2n-1)(2n+1)}cos2nx なんですが、2つ目のこの(cosx/2)について疑問が生じています。 最初に自分は、f(x)は偶関数なので係数Bn=0として答えを求めたのですが(cosx/2)はでてきませんでした。 そこで改めてBnについて計算してみるとBn=0とはならず(cosx/2)も出てきて答えと一致することを確認しました。 そこで質問なんですがf(x)が偶関数の場合でもBn≠0の可能性があるということでしょうか? うまく説明できてないかもしれませんがよろしくお願いします。 フーリエ級数 フーリエ級数 区間[-L/2,L/2]でf(x)=xと定義され、 この区間の幅を周期とする関数を フーリエ級数で表せ。 最近、習ったのですが どうしていいか分からず 手が動かない状態です。 どうすればいいのでしょう? Fourier級数の問題です。 わからない問題があります。 1周期がf(x)=x(-π≦x≦π)で定義される周期関数f(x)をFourier級数に展開せよ。 どうかよろしくお願いします。 フーリエ級数? f(x)=x (0<x<π)をフーリエ展開せよという問題です。 これを解くときフーリエ正弦級数、フーリエ余弦級数を使い展開するみたいなのですが、 答えしか載ってなくて課程がわかりません・・・。 とりあえず、正弦、余弦級数は求まったのですが、 それをどう駆使してもとめればいいのでしょうか? いまいちわかりにくい質問ですいません。。 フーリエ変換の問題(複素フーリエ級数) フーリエ変換の問題(複素フーリエ級数) 次の-L≦X≦Lで定義された関数f(x)を f(X+2nL)=f(x)により -∞<x<∞に拡張した周期関数の複素フーリエ級数展開を求めよ f(x)=0(-L≦X<0), 1(0≦X<L) この問題が解けないので、どなたか教えてほしいです。 f(x)=xのようなかんじだったらとけるのですが、この問題のような形式だと、詰まってしまいます・・・ フーリエ級数の基礎 フーリエ級数はそのグラフが奇関数ならフーリエ正弦級数、偶関数ならフーリエ余弦級数に展開できますよね? そこでf(x)=x(0<x<π)を満たす各xについて f(x)=2Σ(k=0~∞){(-1)^k-1/k}sinkx が成り立つことを証明せよって問題なんですが、 証明する式って言うのは正弦級数展開と同じですよね? でも、奇関数ではないのにこのように展開できるのはなぜですか? あと、これをフーリエ級数に展開するっていうのは ↑の正弦級数と余弦級数を単に足せばいいんですか? いまいちわかっていないので解説おねがいします。 フーリエ級数教えてください! f(x),-∞<x<∞ が ∫[-∞,∞]|f(x)|^2dx<∞ を満たすとき f(x)=1/2π∫[-∞,∞]∫[-∞,∞]f(v)e^iω(x-v)dvdω (i=√-1) が成り立つ(フーリエ積分)。 これは、周期関数に対するフーリエ級数の拡張であるが、上の関係をフーリエ級数の極限操作により、大まかに導出せよ。 という問題です。どなたか解答お願いします。 フーリエ級数について フーリエ級数の問題を解くにあたって、f(x)が偶関数か奇関数かを判別しなければなりませんが、f(x)がどういう値だと偶関数か奇関数になるのかが分かりません。その判別方法を教えてください。 フーリエ級数の問題です。 フーリエ級数の問題です。 (1)、αはZの要素ではないとする。f(x)は周期2πの関数で、f(x)=cosαx、(-π<x≦π)を満たすとする。R上でフーリエ級数に展開せよ。 (2)、得られたフーリエ級数にx=0を代入し、1/sinπαをあらわす級数をもとめよ。また、得られたフーリエ級数にx=πを代入して、1/tanπαxをあらわす級数をもとめよ。(どちらとも、部分分数分解) よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム フーリエ級数の問題 次の関数f(x) (-4≦x≦4) のフーリエ級数を求める問題 f(x)=-x-4 (-4≦x<0) f(x)=0 (x=0) f(x)=4-x (0<x≦4) フーリエ正弦級数を使うことは分かるのですが何故か解けません。何かコツがあるのでしょうか? フーリエ級数 f(x)={1+x(-1≦x≦0) {1-x(0≦x≦1) f(x)のフーリエ級数は? 偶関数・奇関数の見分け方とか 計算過程も明記して貰えると ありがたいと思います。 類似問題も解けるようになりたいので。 フーリエ級数について 次の問題を解いてください。 f(x)を区間-π≦x≦πで連続かつf(-π)=f(π)をみたし、その導関数f'(x)が区分的に連続な関数とする。f(x)が、 F(x)=a_0/2+Σ[n=1,∞](a_n cos(nx)+b_n sin(nx)) とフーリエ級数に展開されるとき、以下の問いに答えよ。 (1)f'(x)をフーリエ級数に展開したときの展開係数をa_n,b_nを用いて表せ。 (2)(1)式の右辺をxで微分し(フーリエ級数の項別微分)、これを(1)と比較せよ。 くわしくお願いします。 フーリエ級数で分からない問題があります 次のフーリエ級数の問題が分かりません 周期2をもつ次の関数f(x)のフーリエ級数を求めよ f(x)=0 (-1<x<0), f(x)=cosπx (0<x<1), f(0)=1/2, f(1)=f(-1)=-1/2. 途中計算もお願いします フーリエ級数です。 f(x)=x(2-x) (0≦x≦2) 問1)フーリエ余弦級数展開を求めよ。 問2)フーリエ正弦級数展開を求めよ。 これらの答えを教えてください。 お願いいたします。 フーリエ級数 初歩的な質問で申し訳ありません 今フーリエ級数を勉強しているのですが、教科書を見てもあまり理解できない状態でいます。 例えば最初のほうに載っていた。 フーリエ級数を求めよ。 f(x)=π^2-x^2 (-π≦x≦π) という問題、答えは教科書に載ってるのですが、 細かいところまで載っていません(簡単な問題だからなのだと思いますが・・・) 非常に勝手なお願いなのですが教えていただけないでしょうか。 よろしく願いします。 フーリエ級数の問題です。 フーリエ級数の問題です。 1.fは周期2πの関数で次を満たす。f(x)=0(-π<x≦0)or f(x)=x(0<x≦π) (1)fをフーリエ級数展開し、各点収束定理を用いて収束を調べよ。 (2)x=π/2を代入してπの値を求める級数を作れ。 よろしくお願いします。 正弦フーリエ級数について教えてください。 正弦フーリエ級数について教えてください。 区間[0,π]で定義された関数、 f(x)={x(0<= x <π/2)、0(π/2<= x <=π)} について、f(x)の正弦フーリエ級数を求める問題です。 一般に、2Lを周期にもつ関数g(x)について、 g(x)=Σ(n=1→∞)bn(sin(nπx/L)) となります。 自分は、f(x)の周期はπなので2L=π,よってL=π/2である、と考えたのですが、解答にはL=πと書いてありました。実際L=πで計算していくと正しい結果になるのですが、私の考え方のどこが間違いなのでしょうか? よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます! y=-2xだと変ですね