ベストアンサー 数学的帰納法はn=kの時の式Pを必ず使って 2013/02/07 06:43 (必ずn=kの時の式Pをn=k+1のPの式に代入して)n=k+1の時にPが成り立つことをいうきまりがあるんですか? 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Rice-Etude ベストアンサー率46% (122/261) 2013/02/07 07:32 回答No.1 「決まりがある」というよりは、このようにして証明する方法を数学的帰納法と呼ぶということです。 別にn=kの時の式を入れずに証明できるならそれで証明しても構わないですが、それは単純に証明しただけですよね? 質問者 お礼 2013/02/07 07:50 ありがとうございます。 [2]の前半の仮定した式を[2]の後半の式に代入するのが、数学的帰納法の必ずすることの一つに入ってったんですね。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学的帰納法 問題 任意の自然数nに対して5・2^n+(-4)^n-1をある素数pで割った時の余りが常に1になるとする時のpの値を求めよ。 解説は添付の資料の通りです。 n=1,2を代入してp=5であるところまでは出来ます。その後帰納法を使った証明で、 途中の解答に、 突然、なぜ漸化式が出てきたのかがわかりません。漸化式を使う必要性はなんですか? 計算が簡単だから? 通常の帰納法のように解答するという方法はダメなのでしょうか?今回の証明は特別に漸化式を使わないと解けない問題だということでしょうか。 数学的帰納法について 1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。 数学的帰納法の問題です 1^2+2^2+3^2+...n^2<{(n+1)^3}÷3 nは自然数とする。次の不等式を証明せよ。 n=kのとき、 n=k+1を代入してからの途中式がわかりません。 お願いいたしますm(_ _)m 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学的帰納法 nは自然数とする。次の等式が成り立つことを証明せよ。 x^(n+2)+y^(n+2)=(x^(n+1)+y^(n+1))(x+y)-xy(x^n+y^n)・・・(1) n=kのとき 上の等式にkを代入して成り立つと仮定する。(この等式を(2)とする) n=k+1のとき このとき(1)の右辺にn=k+1を代入すればあらわれる(x^(k+2)+y^(k+2))に(2)の右辺を代入するんじゃないか。 ぐらいしか思い浮かばないんですが、なにか策はありますか? 集合と数学的帰納法 1.平面上の点P(x,y)の集合A,Bを次のように定義する。 A={P(x,y)|x>0},B{P(x,y)|y≦-(x-k)^2+k かつ y≧kx-1} Bは空集合でなく、しかも B⊂Aであるためには、kはどんな範囲の値でなければならないか = という問題です。わかりにくいやつは⊂の下に=がついたものです。 2.これは数学的帰納法の問題なのですが 数学的帰納法というのは学校で決まった形にあてはめるものだと 習いある程度お決まり文句がありそれはおぼえなければならないと 習いました。で、始めにn=1を代入して成り立つと証明し 次にn=kのとき成り立つと仮定してn=k+1の場合を考えるのですが これは右辺にk+1とする式をひとつ付け加えて左辺にそれと同じものを あてはめて解くというものだと自分では思っているのですがそれでは 解けません・・・ちょっと読解力に欠けているので 例題を出すので解き方を教えてください。 すべての自然数nに対して下の不等式が成り立つことを示せ。 1+1/2+1/3+1/4+・・・+1/n≧2n/(n+1) という問題です。このれいだいのさっきいった n=kを仮定してn=k+1のところを考えるところを教えてください 数学的帰納法 整数nに対して、(n^3)+5nは6の倍数を証明する問題で 数学帰納法を用いると (1) n=1のとき (n^3)+5n=6 6の倍数 (2) kが自然数のとき(k^3)+5k=6A Aは整数とする このときどうしてkのk+1を代入するのですか? 計算をすると (k^3)+5k =(k^3)+5k+3(k^2)+3k+6 =6A+3k(k+1)+6 になりましたが これをどのような意味をもつのか分かりません。 どのように証明するのでしょうか? (3) (n^3)+5nは6の倍数とすると (-n)^3+5(-n)のときやn=0のときもどうして6の倍数になるのか分かりません。 p(n+1)=(1/2)pn この式を、 p(n+1)=(1/2)pn この式を、 pn=(1/2)^(n-1)×p1=(1/2)^(n-1) とするときの解き方がわかりません。 解説をお願いしたいです。 数学的帰納法 n∈Zでn>1のとき、nは素数の積で書けることを示せ。 Pf : nが素数の積として書けることを表す命題をP(n)とする。 根拠: 2は素数なので、P(2)は真である。 帰納的 : P(2), P(3), ..., P(k) が真であると仮定する。 P(k + 1)を考える。 ケース1:k + 1は素数⇒P(k+1)は真 ケース2 : k + 1が合成である。 すなわち、k + 1 = abここで、2≦a≦b<k+1である。 帰納仮説により、aもbも素数の積として書ける。 ⇒ P(k+1)は真である。 強MIにより、n∈Zかつn>1のとき、P(n)は真である。 ----------------------------------------------------- 帰納的 : P(2), P(3), ..., P(k) が真であると仮定する。 ここの部分は2,3,5,7,11...nということですか? なぜk+1が合成である時k+1=abなら2≦a≦b<k+1が成り立つんですか? 数学的帰納法について (1+2+・・・+n)^2 = 1^3 + 2^3 + ・・・ + n^3 を数学的帰納法で証明するのですが、 n=1のとき、 1=1で左辺=右辺。 n=kで成り立つとしたとき、 n=k+1のとき、左辺 - (1+2+・・・+k)^2 = k^3 = (k+1)^3 を求めてみようとしたのですが、 式変形がうまくいきません。 どうかご教授願います。 数学的帰納法 今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。 (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1) 模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。 [2]n=kのとき与式が成り立つと仮定すると、 (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1) ------------------------------------------------------------ ここまでは分かります。以下がわかりません。 この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕 (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している [1][2]よりすべての自然数nに対し与式は成り立つ。 途中からがよくわかりません。分かる方いらしたら教えてください。 数学的帰納法の途中式 P(n)が正しい場合P(n+1)も正しいという数学的帰納法です。 もし Σ(i=1 からK)i(i!)=(K+1)!-1 が正しい(仮定)場合 Σ(i=1からK+1)i(i!) = ((k+2)!-1)も正しい。 そして左側をsolveするわけですが。答えでは Σ(i=1からK+1)i(i!) =Σ(i=1 からK)i(i!)+(k+1)((k+1)!) = [(k+1)!-1]+(k+1)((k+1)!) = ((k+1)!)(1+(k+1))-1 = (k+1)!(k+2)-1 =(k+2)!-1 やったー!一緒になったよ^^w。。。 というわけなんですが。Σ(i=1 からK)i(i!)が([(k+1)!-1]になるくだりがサッパリわかりません。これは数学的帰納法の問題ではなく、ただ単に計算ができないだけなんです。 どなたかヒントか、どうしてこうなるのか教えていただけないでしょうか。いっぱい考えたんですが、頭がもう動きません。 (途中式などがみにくくてすいません) 数学的帰納法について 数学的帰納法といえば、 P(1)の成立を示し、P(k≧1)が成立するならばP(k+1)も成立することを示す、というのが基本パターンですよね。 しかし、「P(1)、P(2)の成立を示し、P(k≧1)が成立するならばP(k+1)も成立する」ことを示さなければうまくいかない時や、 「P(1)の成立を示し、P(1)、P(2)、・・・P(k)(k≧1)が成立するならばP(k+1)も成立する」を示さなければならないパターンもありますよね。 後者2つのパターンですが、どういう場合に、どういう考えでこっちのパターンだな、と検討をつけて証明していくのでしょうか。 最初の基本パターンがうまくいかないから、次は違う方法で・・・というわけではないですよね。 An=An(A1+A2+A3+・・・+An+1)-An+1(A1+A2+・・・An)のとき、 An=2^n-1(2のn-1乗)を示せ、という問題では、 P(1)、P(2)の成立を示し、P(1)、P(2)、・・・P(k)(k≧1)であることを示さなければならないらしいです。 質問をまとめると、 「上の問題の例でいくと、どのような考えでこのパターンで証明するんだな、という検討がつくのか。」です。 具体的な証明の過程は要りません。 回答よろしくお願いします。 数学的帰納法の解き方 こんにちは 大学で帰納法が頻出でいま対策をしているのですが、 帰納法の解き方がイマイチわかりません。 [I]n=1のとき成り立つ [II]n=kが成り立つと仮定して、n=k+1を成り立たせる という手順や理屈は解るのですが、 n=kからn=k+1に変形させる方法やパターンがわからないのです。 先生からは、n=k+1の式を書いてn=kの式に足りないものを加えると教わりました。 例えば両辺に(n+1)を足して右辺を変形させる。 両辺に(2n+2)を掛けて変形 などなど しかし両辺に足したり掛けたりするやりかたではなく、そのまま変形したり不等式によっては比較したりなど方法が様々あり、どの問題をどのやりかたでやればいいのか見当がつきません。 どなたか、助けてください! 数学的帰納法について 数学的帰納法の例題の答えを読んでいると、しばしば 漸化式において n=kのとき成り立つと仮定して n=k+1のときを考えることで、与えられた漸化式より解いていくようになっている思うのですが、 この日本語の書き方を見る限り、n=k+1としたときは、例題の答えのように与えられた漸化式の左辺はaのk+1にはならず、aのk+2になってはしまいませんか? わかりにくい文章で、申し訳ありません。 理解できなければ御指摘ください。 よろしくお願いします n→∞のときn^k →∞ (k>0)の証明 高校の数3の参考書の「数列の極限」の分野に「n→∞のときn^k →∞ (k>0)」の証明が載っていたのですが、よくわからない部分があります。 kが正の整数のとき明らか。 kが正の有理数のときk=q/p (p, qは正の整数)とすると …(1) n^k=n^(q/p) =(n^q のp乗根) n^q→∞であるから(n^q のp乗根)→∞ …(2) すなわちn^k→∞ kが正の無理数のとき、 (以下略) この、(2)の部分が分かりません。 この部分は結局、(ある数列)→∞ならば、(その数列の自然数乗根)→∞ということを根拠にしてるのかなと思うのですが、それがどうして言えるのでしょうか? あと、(1)の部分ですが、この設定だと任意の正の整数kも表せるので、この場合において題意を示せれば、1行目の「kが正の整数のとき」の検討は要らないように思うのですが、それで合っているでしょうか? よろしくお願いします。 漸化式と数学的帰納法 問題集をやっていたらわからないところ2つがあったで誰かわかる方教えてください。途中までやったのですがわからなくなりました。 数列はa(1)、 a(2)、と表しています。 一般項を求めなさいという問題で (1)a(1)=2,a(n+1)=a(n)+n^2-2n(n=1,2,3…) (2)a(1)=2,a(n+1)=3(an)-1(n=1,2,3…) の問題ですが途中まで解いたのを書いておきます。 (1)漸化式よりすべての自然数kについて次の式が成り立つ。 a(k+1)-a(k)=k^2-2k よって数列{a}の階差数列の第k項はk^2-2kであるから n≧2 a(n)=a(1)+Σ{k^2-2k} ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 (2) n=k+1とすると a(k+2)=3a(k+1)-1 n=kとすると a(k+1)=3a(k)-1 この2辺の辺々と引くと a(k+2)-a(k+1)=3{a(k+1)-a(k)}…(1) 数列{a(n)}は階差数列を{b(n)}とすると(1)は b(n+1)=3b(k) となる。{b(n)}は公比3の等比数列であり、また、 b(1)=a(2)-a(1)=5-2=3 b(k)=3・3^k-1 したがって、n≧2のとき a(n)=a(1)+Σb(k)=2・Σ3・3^k-1 ここまで解けたたのですがここらかがわかりません。 Σはn-1のk=1です。 両方とも途中までは一応やったのですが途中までもあっているかわかりません。 誰か判る方がいましたら教えてください。 数学的帰納法の不等式の証明について n >= 2のとき、 1+1/2+1/3+・・・・+1/n > 2n/n+1 ・・・・(A) という数学的帰納法の不等式の証明の問題で 回答を見てみたところ、 n = k + 1の時も成り立つ事を証明する為に、 (1) (A)にk+1を代入した時の右辺 (2) (A)にkを代入した時の式の両辺に 1/(k+1) を加えた時の右辺 (1)、(2)を使用して (1) < (2) ・・・・ (B) と書いてありました(数式は省きます)。 (B)の時に、 <1> なぜ証明する為に(1)と(2)の右辺を利用するのか <2> なぜ不等号が(B)のような向きになるのか がよくわかりません。 どうかご教授お願い致します。 もしとんちんかんな事を書いていたらすみません(^^;A 【数学B】数学的帰納法 発展問題 まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。 数学的帰納法の第二段について 数学的帰納法は第一段と第二段でわかれてるのですが第二段について質問です。 (Ⅱ) n=kのとき、命題P(n)が成り立つことを仮定すれば…。 この仮定すればって言うのは、第一段で、n=1は成り立つことから、1以外の数をn=kと表すことにして、これが成り立つかどうかはわからないけど、n=k+1が成り立つことを証明することは、n=1にkを足しただけ、逆を言えば、第一段で成り立ったn=1の時の等式にkを足したものだから、成り立ったものとn=k+1の等式を関係づけて証明するっことです? 要するに、仮定の使われ方がわかりません。自分なりに考えてみたんですが、しっくりきません。どうかよろしくお願いします。 数学的帰納法 問い nが自然数のとき、次の等式が成り立つことを、数学的帰納法で証明せよ。 1^3+2^3+3^3+4^3+・・・n^3=(1/4)n^2(n+1)^2 n=1のときが 左辺=1^3=1 右辺=1/4*1*2^2で n=k or n=k+1のときは 左辺=(k+1)k^3 右辺=(1/4)k^3(k)(k+1)^2 これじゃ回答にならんですよね。 n=k or n=k+1のときを証明する時になにを加えればよいかわかりません。 ヒントだけでも教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 [2]の前半の仮定した式を[2]の後半の式に代入するのが、数学的帰納法の必ずすることの一つに入ってったんですね。