締切済み 2次不等式 2012/12/29 22:24 2次不等式をより理解しやすいように指導するにはどうすればいいですか? 分かりやすい指導法などがあったら教えてください。 みんなの回答 (1) 専門家の回答 みんなの回答 spring135 ベストアンサー率44% (1487/3332) 2012/12/29 23:53 回答No.1 グラフを書くことです。 不等式 F(x)>G(x) が指定された場合 H(x)=F(x)-G(x) について H(x)>0 となる条件を求めることに帰着します。 これは y=H(x) のグラフを書いて y>0 の範囲を眺めれば一目瞭然です。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 2次不等式の指導について 2次不等式の指導について 2次不等式の解き方はまず式変形による方法から指導すべきだと思いますか。計算能力の低下が気になりますので。 方程式と不等式の指導について 方程式と不等式の指導について 次の方程式や不等式はいつ指導すべきだと思いますか。 (1)1次方程式 (2)2次方程式 (3)簡単な高次方程式 (4)連立2元1次方程式 (5)連立3元1次方程式 (6)1次と2次の連立2元方程式(直線と二次曲線の連立) (7)1次不等式 (8)2次不等式 (9)連立1元1次不等式 1次不等式の問題 昨日1次不等式の質問をした者です。 1次不等式の理解力を深めたいので同じような問題をいくつか解きたいのですが 似たような問題を取り扱ってるサイトを見つけられませんでした。 1次不等式の計算は問題なくできます。 定数aの範囲がどうのこうのという問題を探してます。 回答者さんの自作でも構いません ご存じの方どうかご協力お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 二次不等式…わかりません。 以前も二次不等式の問題で質問したんですが、またどうしても理解できないの問題があるので教えてください。 問題:次の二次不等式が与えられた範囲内において常に成り立つように、定数mの範囲をそれぞれ求めよ。 式:x^2-2x+m≧0 範囲:-2≦x≦0 という問題です。 まず、問題の意味からわからないんですが… この範囲-2≦x≦0というのは何者なんでしょうか? これは、二次不等式の解の範囲ですか? でも、そうしたら、x^2-2x+m≦0じゃないと成り立たない気がするんですね。 それから、x^2-2x+m≧0ということは、xが0のときにmは0以上なんですよね。だから、何?っていう話なんですけど・・・・この考えは使えますか? 教えてください。 ちなみに、解答はm≧0です。 この不等式の解き方がわかりません。 |x|+2 / |x| - 3 < 4 答えは、わかりました。(x<-14/3, -3 <x< 3 , 14/3 <x ) ですが、どのように計算すれば、 -3 <x< 3 という答えが出てくるのかがわかりません。; |x|が3よりも大きな数字になった瞬間から、 この不等式が成り立たなくなるというのは、理解できます。 しかし、そのことを 理屈で考えるのではなく、計算で解く方法があるのならば、それを知りたいと思いました。 どのように考えれば良いのか、教えてください。 二次不等式です 次の条件を満たす実数kの 値の範囲を求めよ。 1、 すべての実数xに対し、 不等式 kx^2-kx+2>0 が成り立つ。 2、 ある実数に対し、 不等式 x^2―3x+4<kx が成り立つ。 教えていただけると 助かります。 一次不等式について 一次不等式の解き方について詳しく教えていただけますか。 あと、できれば例をあげていただければ助かります。 2次不等式を解いていただけませんか。 以下、6問の2次不等式を解いていただけませんか。悩める父親より (1)χ²-4χ-12≧0 (2)6χ²-5χ+1>0 (3)-χ²-χ+2≧0 (4)χ²-2χ-2≦0 (5)4χ²-5χ-3<0 (6)2χ-3>-χ² 宜しくお願いします。 二次不等式の計算 二次不等式の計算で、判別式を使う時はどのようなときでしょうか? 問題を解いていると、公式を使ったり因数分解してたりと、様々な時が出てきていてよく理解出来ませんでした。。 2次不等式 2次不等式 2x^2-7x+6<0 の解は(ア)である。 また、a>0であるとする。 2次不等式 x^2+(2-a)x-2a≦0の解は(イ)である。 これら2つの2次不等式をともに満たすxが存在するようなaの値の範囲は(ウ)である。 解答 (ア)3/2<x<2 (イ)-2≦x≦a (ウ)a>3/2 aの値の範囲の出し方が分かりません。 <なのか≦なのかが分からないです。 解説よろしくお願いします。 1次不等式の問題 以下の1次不等式の問題がわかりません。 数学がかなり苦手なのでできる限り詳しく説明をしてくれる方の解説をお願いします 問題 不等式3x-a<2(5-x)を満たすxのうちで最大の整数が5であるときに定数aの値の範囲は? x<(a+10)/5 ここまで解きました。 xは5以上6以下なので 5<(a+10)/5<6 aについて解くと 15<a<30 だと思ったのですが <6ではなく≦6 a<30ではなくa≦20 になる理由がいまいちわかりません。 動画の説明を聞いてもいまいち理解できません 1次不等式で検索を掛けて1次不等式について調べたのですが似たような問題を扱ってるサイトがなく困ってます。 もう少し例題が優しいものか簡単に説明をお願いします。 1の問題 https://www.youtube.com/watch?time_continue=1&v=b_hqey6D9Pw 1次不等式 次の1次不等式の解き方おしえてください! x/3-(2x-1)/2≦1 おねがいします!! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 2次不等式 こんばんは。 よろしくお願いいたします。 二次不等式2x^2-3x-2≦0を満たすxの値が常に二次不等式x^2-2ax-2≦0を満たすような定数aの値の範囲を求めよ。 という問題がわかりませんでした。 2x^2-3x-2≦0から (2x+1)(x-2)≦0 なので-1/2≦x≦2まで解きました。 その次からどうしたらよいのかわかりません。 教えてください よろしくお願いいたします。 2次不等式 2次不等式がよくわからないので教えて頂けますでしょうか 2次不等式を解くにあたって関数を正にするとあるのですが つまり y=ax^2+bx+cの a の部分を正にするわけですよね? ここで疑問なのが正にすることで下に凸のグラフしかできあがらなくなると思うのですが2次不等式を解く場合は下に凸のグラフしか無いということなのでしょうか? 今使ってる参考書は問題数が少ないからなのかどうかはわかりませんが全ての問題が下に凸のグラフになってます。 下に凸でも上に凸でも符号の向きが変わるから結局同じ答えになるということですか? よろしくお願いします 二次不等式・・・難し・・・ 二次不等式・・・難し・・・ 2次不等式 x*2-(a+2)x+a+1<0 を満たす整数xが存在しないように、定数aのの値の範囲を定めよ。 判別式で余裕と思ったのですが、できません!! 数学が得意な方! 方針を伝授してください! (*2は二乗をあらわします”) 2次不等式 xの2次不等式x^2+mx+m+3<0 でこの不等式が解をもたないようなmの範囲を求めよ。という問題です。 判別式D=b^2-4acを使い D<0となるmの範囲を考えましたが、解答を見るとD≦0のときのmの範囲でした。 どうしてD<0ではなくD≦0なのでしょうか?教えてください。 一次不等式の数直線 こんにちは。 高校1年の一次不等式についてです。 一次不等式を解くとき、数直線を書かなければダメですか? 模試などでは、書かないと点数を引かれますか? 回答よろしくお願いします。 二次不等式がわかりません 高校1年生の数Iの二次不等式がわかりません <,=,>の使い分けがよくわかりません。 わかる方教えてください 1次不等式の問題 前回質問した内容と同じなのですが質問内容に間違いが多すぎて混乱してしまうので再度質問させてください。 以下の1次不等式の問題がわかりません。 数学がかなり苦手なのでできる限り詳しく説明をしてくれる方の解説をお願いします 問題 不等式3x-a<2(5-x)を満たすxのうちで最大の整数が5であるときに定数aの値の範囲は? x<(a+10)/5 ここまで解きました。 xは5以上6未満なので 5<(a+10)/5<6 aについて解くと 15<a<20 だと思ったのですが <6ではなく≦6 a<20ではなくa≦20 になる理由がいまいちわかりません。 動画の説明を聞いてもいまいち理解できません 1次不等式で検索を掛けて1次不等式について調べたのですが似たような問題を扱ってるサイトがなく困ってます。 もう少し例題が優しいものか簡単に説明をお願いします。 1の問題 https://www.youtube.com/watch?time_continue=1&v=b_hqey6D9Pw 2次不等式 ((問)) a<0のとき、2次不等式 f(x)>0 が -2≦x≦1 を満たす全ての実数xについて成り立つときのaの値の範囲を求めると何か? ((問)) 2次不等式 f(x)>0 が -2≦x≦1 を満たす全ての実数xについて成り立つときのaの値の範囲を求めると何か? 誰か分かりやすく説明して欲しいです!! お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など