締切済み 中2数学の問題 証明 2012/12/16 23:34 右の五角形ABCDEにおいて、∠A、∠Bの二等分線の交点をKとする。 ∠C=140° ∠E=100° とするとき、 BC//DEとなるとき、∠AKBの大きさを求めなさい。 画像を拡大する みんなの回答 (2) 専門家の回答 みんなの回答 yyssaa ベストアンサー率50% (747/1465) 2012/12/18 16:32 回答No.2 180-130=50° 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 static_puts ベストアンサー率50% (5/10) 2012/12/17 00:30 回答No.1 平行線の同位角の関係を利用すれば、∠CDE=40度であることがわかります。 五角形の内角の和は540度ですから、 ∠EAB+∠ABC+∠BCD+∠CDE+∠DEA=540度 となります。わかっている角を代入して ∠EAB+∠ABC+140度+40度+100度=540度 従って ∠EAB+∠ABC=260度 となります。 ここで、角の二等分線を考えますと ∠ABK+∠KAB=130度 となります。 三角形の内角の和は180度なので、求めるべき∠AKBは40度です。 おつかれ様でした。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の証明問題について 数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m 中二数学 図形 もう一問おねがいします。 △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。 証明の問題 タイトルどうりですけど、 △ABCで、∠B、∠Cの二等分線の 交点をPとし、Pを通り辺BCに平行 な直線がAB、ACと交わる点をそれぞれ D、Eとする。このとき、 BD+CE=DEであることを証明しなさい。 図 A △ B C という問題の答えを教えてください。。 問題わかりずらくてすいません。。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 中2 数学 図形 今日のテストでこのような問題がでました。 AB=10cm、BC=10cm、AC=12cmの△ABCがあります。 この三角形の∠Bの二等分線と∠Cの二等分線との交点を点Pとします。 また、点Pを通り辺BCと平行な線をひき、 辺ABとの交点をD、辺ACとの交点を点Eとします。 (1)△ADEの周の長さを求めなさい。 という問題です。 答えも解き方も全く分かりません。 回答お待ちしています。 二等分線であることの証明 △ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。 相似の問題です ΔABCにおいて、∠Aの二等分線と辺BCの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8,BC=7、CA=6のとき、DEの長さをもとめよ。という問題なのですが、解答を見てみるとAB:AC=BE:CEとなっているのですが、理由がわかりません誰か教えてください。 中学の数学です △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。 数学の証明 数学の証明についてなんですが、 等しい所は探して出せるのですが・・・式の作り方がわかりません 説明するとわかりずらいので例の問題でいいます。 2つの角が等しい三角形の2辺は等しいことを証明しなさい。 頂点がA 左がB 右がC ∠Aの二等分線をひき、BCの交点をDとする という問題なんですが、僕が今のところわかるのは △ABD=△ACD で∠B=∠Cは等しい・・・・・ までわかるのですが、その続きの式ができないのと、 仮定をABD=ACDにするのか∠B=∠Cにするのか わかりません。 テストが近いので失敗はしたくないので どうかおしえてください・・・・・。 中二数学 図形 △ABCの∠Bの二等分線と点Cにおける外角の二等分線の交点Dのとき、∠BDCの大きさは? です。よろしくお願いします。 数学の問題です… △ABCにおいて a=6 b=7 c=5 ∠Aの二等分線と辺BCの交点をDとする ADの長さは? この問題、他のサイトで質問させていただいて ヒントいただいたんですが よくわかりませんでした。 もう一度あちらで聞きなおすのも失礼なので どなたか教えてください! 少し変な数字がでたので 気になってしまって… 数学の問題です AB=4, BC=5, CA=6である△ABCにおいて、∠Aおよびその外角の二等分線が直線BCと交わる点を,それぞれD,Eとする。線分DEの長さを求めよ。 この問題についてですが、どちらの図が正しいですか。 数学の問題です AB=4, BC=5, CA=6である△ABCにおいて、∠Aおよびその外角の二等分線が直線BCと交わる点を,それぞれD,Eとする。線分DEの長さを求めよ。 この問題の三角形の図を教えていただけませんか。よろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角形の性質の問題です 三角形の性質の問題です。△ABCはAB=ACで∠C=72°である。∠Bの二等分線とACとの交点をDとする。(1)△ABCと△BCDは相似であることを示せ。 (2)AD:DCを求めよ。(3)直線BC上の点EをBC=BEとなるようにとる。ただしEはCと異なる点である。DEとABの交点をFとするとき、AF:FBをもとめよ。(1)(2)はできたのですが、(3)がわかりません。ちなみに解答は(1+√5 :1です。どなたか教えてください。よろしくお願いします。 この中学生の問題をお教えください。 三角形ABCで角Bの二等分線と頂点Cにおける外角の二等分線との交点をDとする。また、Dを通りBCに平行な直線と、AB、ACとの交点をそれぞれE,Fとする。BE=6cm、BC=7cmのとき、台形EBCFの周の長さを求めなさい。 数学 相似の問題 学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4) AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください! 証明問題 ACを斜辺とする直角三角形ABCについて、次のことを証明せよ。 (http://cult.jp/linne/study.html) 1)∠Bの二等分線と辺ACとの交点をD、△ABCの外接円との交点をEとすると、BD・BE=AB・BC 2)BD・BE=2△ABC 1)分からないんですが、私的に分かったことは、 ・△ABD∽△DEC ・方べきの定理よりDA・DC=DB・DE ・BC:BA=CD:DA ということです。コレだけで解けるでしょうか?? 2)コレは何をどうすれば証明できるのか分かりません。 何から始めればいいのかも分かりません; 数学Aの平面図形(証明) 数学Aの平面図形(証明) (1)三角形ABCにおいて、頂点Aにおける外角の二等分線上にAと異なる点Pをとると PB + PC > AB + AC 図は描けますが、証明の仕方が分かりません。 外角の二等分線が条件にあるので、使わなければいけないのだと思うのですが、どのように使うのかが分かりません。 (2)三角形ABCと三角形A'B'C'があって、3直線AA'、BB'、CC'が1点Xで交わるならば、直線BCとB'C'の交点P、CAとC'A'の交点Q、ABとA'B'の交点Rの3点P、Q、Rは一直線上にあることを示せ。 という問題です。 まず図形すら描けません。 どうやって証明するのでしょうか? 数学の問題 すみませんが、解答と解説をお願いします。 問題 図のように、二等辺三角形ABCの∠Aの二等分線とBCとの交点を Dとする。また、AC上に点Eをとり、BEとADとの交点をFとする。 AE:EC=7:2のとき、x:yを求めよ。 数Iの問題です。 △ABCにおいて、AB=10、AC=6、∠A=120°である。このとき、次の値を求めよ。 ∠Aの二等分線とBCとの交点をDとするとき、ADの長さ 【答え】 15/4 考えました。 まず、BCを出したいと思い、a^2=b^2+c^2-2bc cosAに代入して、 a(BC)=14と分かりました。 ∠Aの二等分線とBCとの交点をDのことからBD=CD=7と考えました。 次にb^2=a^2+c^2-2ca cosBの公式を利用して AD^2=AB^2+BD^2-2・AB・BD・cosB =10^2+7^2-2・10・7・cos30° =100+49-140・√3/2 =100+49-70・√3 =149-70√3 となってしまいました。ここから先、どうすれば解を求められますか? 間違ってますか?教えてください。 数1の三角形の頂点の二等分線の問題です。 数1の三角形の頂点の二等分線の問題です。 どうしても解けません。 1、△ABCで、AB=√3、AC=2、∠A=60°とし、∠Aの2等分線とBCとの交点をDとする。ADの長さを求めよ。 2、△ABCにおいて、a=13、b=7、c=8とし、∠Aの二等分線とBCの交点をDとするとき、ADの長さを求めよ。 という問題の2つ、わかる方教えてください。 2に関しては一応答えはでたのですが、「15分の√2119+25」というめちゃくちゃな数字になってしまいました。。。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など