ベストアンサー 確率の問題です。 2012/10/05 07:15 答えを教えて下さい。 A,B,Cの3人が同一の試験で合格する確率はそれぞれ 1/2,2/3,1/3であるとき次の確率を求めなさい。 (1)A,Bが合格し、Cが合格しない。 (2)3人のうち2人だけが合格する。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー suko22 ベストアンサー率69% (325/469) 2012/10/05 07:59 回答No.1 (1)1/2*2/3*(1-1/3)=2/9 (2)(A,Bが合格、Cが不合格の確率)+(B,Cが合格、Aが不合格の確率)+(C,Aが合格、Bが不合格の確率) =2/9+2/3*1/3*(1-1/2)+1/3*1/2*(1-2/3)=7/18 質問者 お礼 2012/10/08 22:30 ありがとうございました! 助かりました。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) alice_44 ベストアンサー率44% (2109/4759) 2012/10/05 09:17 回答No.2 A,B,C それぞれの合格は、独立事象なんですか? 質問者 お礼 2012/10/08 22:31 勉強が足りずに申し訳ありません。 独立事象かどうかは、不明です……。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 高校数学A確率の問題 A.B.Cの三人がある試験に合格する確率はそれぞれ 2/5、3/4、1/3 であるとする。 このとき ①少なくとも一人が合格する確率を求めよ。 ②3人のうち2人だけが合格する確率を求めよ。 この問題が考えてもわかりません。 どなたか教えてくださいm ちなみに答えは ①9/10 ②23/60 です。 A,B,Cの3人がある試験に合格する確率がそれぞれ A,B,Cの3人がある試験に合格する確率がそれぞれ1/3,1/2,2/3 であるとき次の確率を求めよ。 (1)3人とも合格する確率 (2)少なくとも1人が合格する確率 (3)2人だけ合格する確率 この問題の答えを教えてください。 数学A 確率の問題 A、B、Cの3人が、ある試験を受けて合格する確率は、それぞれ、1/2、1/3、1/4であるものとする。このとき、次の確率を求めよ。 (1)Aだけが合格する確率 (2)少なくとも1人が合格する確率 まったくわかりません。 解説回答をお教えください。 確率について 複数の試験を受験し、合格する確率をお教えください。 A試験 合格率50% B試験 合格率40% C試験 合格率60% D試験 合格率40% E試験 合格率20% ①AとBの試験を受験し、両方合格する確率 ②CとDの試験を受験し、両方合格する確率 ③A~Eの試験を受験し、すべて合格する確率 上記の3パターンをお教えいただけますでしょうか。 できれば式も踏まえてよろしくお願いいたします。 確率の問題で分からないのがあるので教えてください。 12本のくじの中に当たりくじが3本ある。このくじをA、B2人がこの順に1本ずつ引く。ただし、引いたくじはもとに戻さないとする。次の確率を求めてください。 (1)AもBもはずれる確率 (2)Bが当たる確率 ちなみに答えは、 (1)6/11 (2)1/4 です。 確率の問題で 問題自体はさほど難しい問題ではないのですが、解説がどうなのか?と思ったので質問します。 A,B,Cの3人が試合をする。まず、2人が対戦して、買った方が残りの1人と対戦する。これを繰り返して、2連勝した人が優勝する。AがB,Cに勝つ確率をp、qとし、BがCに勝つ確率を1/2とする。次の確率を求めよ。 ただし、0<p<1,0<q<1とする。 (1) 第1戦にAとBが対戦し、Aが勝った場合にAが優勝する確率 この問題の解説では、「Aが第1戦に勝ったもとでAが(最終的に)優勝する確率」をPとおいて求めています。 Pを計算すると、P=2q/(2-p+pq)となります。ここまではいいのですが、この後、 Aが第1戦に勝って優勝する確率は p*P=2pq/(2-p+pq) として、これを答えとしています。 もし、問題が「・・・Aが勝って、Aが優勝する確率」とあるなら、何も疑問に思うことはないのですが、問題では「・・・Aが勝った場合に、Aが優勝する確率」とあるので、第1戦でAが勝ったという条件で、Aが優勝する確率を求めればいいので、 答えは、P=2q/(2-p+pq) ではないかと思うのです。 第1戦にAが確率pをかける必要はあるのでしょうか? 確率の問題{解き方の違いがわからない} 同じ考え方で解けると思う問題が、なぜか微妙に解き方が違っており困っています。 問1 サイコロを振って、3の倍数の目がでる確率は1/3ですが、これが3回のうち2回でる確率はいくつか。 ○○×→1/3×1/3×2/3=2/27 ○×○→1/3×2/3×1/3=2/27 ×○○→2/3×1/3×1/3=2/27 合計...2/9 この問はこのように解けますよね。僕でも理解できます。ところが… 問2 2人で対戦するゲームにおいて、AがBに勝つ確率は0.6、BがCに勝つ確率は0.4、CがAに勝つ確率は0.7である。いま、A、B、Cの3人が抽選をして2人がまずゲームをし、次にその勝者が残りの1人とゲームをし、次にその勝者が残りの1人とゲームをして優勝を争うものとする。このときAの優勝する確率はいくらか。ただし、引き分けはないものとする。(正解 0.26) 僕の解き方 (AvsB→AvsC→A) 6/10×3/10=18/100 (AvsC→AvsB→A) 3/10×6/10=18/100 (BvsC→BvsA→A) 4/10×6/10=24/100 (BvsC→CvsA→A) 6/10×3/10=18/100 よって答えは、78/100 …あれ?選択肢にこの答えがない! テキストの解説では、全ての式に必ず1/3をかけていました。 ここで1/3をかけるのは、それぞれの対戦ケースを表しているということなのでしょう。しかし、それであれば、問1の計算も、それぞれ1/3をかける必要性がでてきてしまいますよね。なぜ、この問題だけそれぞれに1/3をかけるのですか。僕は最後の最後まで1/3をかける、といったことは頭に浮かんできませんでした。 一度習ったことでも、応用させるのは難しく、立ち止まってばっかりです。宜しくお願いします。 確率の問題です 次のような問題があります。 赤球3個と白球4個を含む袋から2個の球を無作為に取り出し、色を確認後、袋に戻す。 次に、再度2個の球を取り出し、球の色を見るとき、次の確率を求めよ。 (a)最初の取り出しで赤が2個でて、次の取り出しで白が2個でる。 (b)取り出された球が4個とも同じ色である。 (a)の答えは、(3C2/7C2)*(4C2/7C2)=(1/7)*(2/7)=2/49 (Cは組み合わせのC) (b)の答えは、P(赤、赤)・P(赤、赤)=(3C1/7C2)^2=1/49 P(白、白)・P(白、白)=(4C1/7C2)^2=4/49 よって、1/49 + 4/49 = 5/49 ここで質問です。 (a)で最初の取り出しで赤が2個でる確率を(3/7)^2とすると、これは何の確率を求めている ことになるのでしょうか。 (b)の答えで、P(赤、赤)およびP(白、白)の分子がそれぞれ3C1、4C1といずれも1になっている のはなぜでしょうか。 数学の得意な方、どなたがご教示下さい。 確率の問題 確率の問題で、答えに自信がないので見てください。 【問題】A,B,C,D,Eの5人が、1,2,3,4,5の数字が書かれたくじを引く。このとき、Aが「1」のくじを、Bが「2」のくじを引く確率を求めなさい。 【私の答え】 すべてのくじの引き方は、5!通り。 (A,B)=(1,2)のとき、 残りはC,D,Eが3,4,5のくじを引くので、3!通り。 したがって求める確率は、3!/5!=1/20 これで合っていますか? 確率の問題・・・ 2つの確率の問題を教えて下さい。 (1)1から50までの番号をつけた50枚のカードの中から1枚のカードを取り出す時、カードの番号が3で割り切れない確率は?・・・という問題を解いて答えをみたら17/50ってなってたんですけど、どうしてもこの答えになりません。 (2)A,B,C,D,Eの5文字を横一列に並べるとき、AがBより左にある確率は?・・・という問題は、AとBを一つの文字と考えて4!/5!という考え方をしてはいけませんか? 確率の問題です。 4個のサイコロを振って出た目の数をa,b,c,dとする。積a,b,c,dが4の倍数になる確率を求めよ。 という問題と 当たりくじが3本入った10本のくじがある。A,B,Cの3人がABCの順で繰り返して10本終わるまで引く。B,Cが2人とも当たる確率を求めよ。 という問題です。 確率の問題が苦手なので考え方がよくわかりません。 わかりやすく教えてもらえたら嬉しいです。 確率の最初の方の問題 確率・統計の本を購入し勉強をはじめたのですが、いきなりつまづいてしまって困っています。 次の2問なんですが、問題の条件設定が足らないように思うのですが・・・ 本には答えが省略されており、かなり基本的な問題なのかもしれません。。 どなたか分かる方居ましたら教えてください。 宜しくお願いします。 1、事象A,B,Cについて確率 P((A^c∩B^c)∪C^c) を,P(A∪B)とP(C)を使って表せ。 2.さいころを投げて出る目の数を表す確率変数Xについて|X-3|の確率分布を求めよ。 確率の問題について 自分なりに解いたのですが、答えが違ってしまいます。 どこが間違っているのかご指摘をお願いいたします。 【問題】 袋の中に赤球2個、白球3個、青球4個が入っている。A、B、Cの3人がこの順番で1個ずつ球を取り出すとき、Cが赤球を取り出す確率を求めよ。ただし、A、Bが取り出した球は袋の中に戻さないものとする。 1 1/3 2 2/9 3 4/27 4 5/27 5 16/81 【答え】2 2/9 【私の解答】 Aが赤以外を取り出す…7通り Bが赤以外を取り出す…6通り Cが赤を取り出す …2通り 色関係なくABCが球を取り出す…9P3 よって、Cが赤を取り出す確率は 7×6×2/9P3=1/6 (もはや選択肢にもない答えに…) どうぞよろしくお願いいたします。 確率の問題 確率の問題を解説していただきたいです。 a,b,c,d 4つの部屋があります。 aから外に出る確率は1/3、aからbに移る確率は1/3、aからcに移る確率は1/3 bからcに移る確率は1/3、bからaに移る確率は2/3 cからdに移る確率は2/3、cからaに移る確率は1/3 dから外に出る確率は1/3、dからbに移る確率は1/3、dからcに移る確率は1/3 となっています。 スタート地点はaであり、移動回数に制限はありません。dから外に出る確率はいくつになりますでしょうか? どうぞよろしくお願いいたします。 確率の問題です 勝負して勝つ確率が1/2であるA, B, Cがいる。 以下のような条件でトーナメントをする。 まず、AとBが対戦する。次に勝者がCと対戦する。 勝者は前の試合に参加していない人と対戦する。 2回連続勝ったら優勝となりそこで終わり。 (1) Aが優勝する確率 (2) n回目で勝負が終わる確率 (解答はありません) 解いてみたところ、 (1)5/14 (2)(1/2)^(n-1) となりました。 A,Bは同じ確率のはずなので、Cは2/7。 改めてCを解いてみたところ、2/7となりました。 問題からA=B>Cであることはわかるし、上記のような 結果が出たので、おそらくあっているのだと思うのですが、 少し自信がないので、確認してくださる方いませんか。 よろしくお願いします。 確率の問題です 10本のくじがあり3本のくじがあたりでA君B君C君が順番にくじを引きます引いたくじは戻しません。C君があたりを引く確率はなんですか? 答えは3/10です よろしくお願いします 教科書に確率の問題で 教科書に確率の問題で Aが出る確率は1/2,Bがでる確率は1/2だとする。6個ランダムに引いた場合 1)全部Aの確率 2)最初の4つがAで残りはB 3)半分がA という問題があって 恐らく1)の答えは単純に(1/2)^6だと思うのですが、2)と3)が幾ら考えても分かりません。。 答えが載っていないので、あってるのかすら分かりません。。 どうやってとけばいいのでしょうか。。 後、ポーカーでフルハウスの組み合わせは何かという質問で 答えが13X12X4C3X4C2だとありました。 13と12はなんとなく分かるのですが、何故4C3と4C2をかけるのでしょうか? そして同じような問題で、5つのサイコロを転がした時にフルハウス(三つ同じ数、二つ違う同じ数)になる組み合わせが 6X5X5C2 とありました。 ポーカーでのフルハウスでは二つ”C”という記号を使っているのに対し、今度は一つしか使われてません。 教科書を何度も読みましたがさっぱり分かりません。。 どなたか分かりやすく説明していただけませんでしょうか? 確率(サイコロ)の問題です 問)n個のサイコロ(n≧2)を同時に投げる時、出る目の最小値が2、最大値が4である確率を求めよ 解) 目の出方は6`n通り A:出る目が全て2、3、4のいずれか B:出る目が全て2、3のどちらか C:出る目が全て3、4のどちらか よって求める確率は 〔P(A∩(B∪Cでない))〕=P(A)-P(B∪C)=P(A)-{P(B)+P(C)-P(B∩C)}であり B∩C:出る目が全て3 だから、3`n/6`n-{(2`n+2`n-1)/6`n}=(3`n-2*2`n+1)/6`n 〔〕内の式をどうやって立てたのか分かりません。(nに2等を代入すると正しい答えが出てくるので答えは合っています) どなたかヒントだけでもいいので、考え方を教えていただけませんか?お願いしますm(__)m 確率の問題 確率の問題を解きたいのですが、高校を卒業してしばらく数学から離れたためまったく分からないので解法と答えを教えてください。 問題はA、B、Cと箱が三つ有り Aは赤玉8個白玉2個 Bは赤球4白玉6個 Cは赤球2個白玉8個の割合で入ってる。 (1) 箱を一つランダムで選び、二個ランダムに取り出す。(元には戻さない) その取り出した玉が赤球1個白玉1個の組み合わせだった。このとき選んだ箱がAの確率、Bの確率、Cの確率を求める。 (2) (1)の状況後、その時選んだ箱を捨て、残った箱2つから1つをランダムに選ぶ。このとき新しく選んだ箱が結果的にAの箱であるか確率は、(1)で述べた状況が起きた時点で判断して、いくらになるか よろしくお願いします。 確率 A,Bの2人がある試合を行う。各試合でA,Bが勝つ確率はそれぞれ2/3,1/3であるとする。次の確率を求めよ。 (1)先に3勝したほうが優勝となるとき、Aが優勝する。(答え:64/81) (2)先に3勝したほうが優勝となるとき、4試合目で優勝が決まる。 (答え:10/27) 解き方がわからないので、回答のほうよろしくお願いします! 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
ありがとうございました! 助かりました。