- ベストアンサー
確率の問題で
問題自体はさほど難しい問題ではないのですが、解説がどうなのか?と思ったので質問します。 A,B,Cの3人が試合をする。まず、2人が対戦して、買った方が残りの1人と対戦する。これを繰り返して、2連勝した人が優勝する。AがB,Cに勝つ確率をp、qとし、BがCに勝つ確率を1/2とする。次の確率を求めよ。 ただし、0<p<1,0<q<1とする。 (1) 第1戦にAとBが対戦し、Aが勝った場合にAが優勝する確率 この問題の解説では、「Aが第1戦に勝ったもとでAが(最終的に)優勝する確率」をPとおいて求めています。 Pを計算すると、P=2q/(2-p+pq)となります。ここまではいいのですが、この後、 Aが第1戦に勝って優勝する確率は p*P=2pq/(2-p+pq) として、これを答えとしています。 もし、問題が「・・・Aが勝って、Aが優勝する確率」とあるなら、何も疑問に思うことはないのですが、問題では「・・・Aが勝った場合に、Aが優勝する確率」とあるので、第1戦でAが勝ったという条件で、Aが優勝する確率を求めればいいので、 答えは、P=2q/(2-p+pq) ではないかと思うのです。 第1戦にAが確率pをかける必要はあるのでしょうか?
- みんなの回答 (3)
- 専門家の回答
お礼
>問題をどのように解釈したかを明記しておくのが自衛策として望ましいですね。 なるほど。それはいいですね。 でも、この問題では、何も考えずに条件付き確率と解釈したので、その自衛策がとれるか微妙ですね。 回答ありがとうございました。