高校数学の確率の問題です
右図のように12個の点A,B,C,D,E,F,G,H,K,Lが12本の線で結ばれている 粒子Pが点Aを出発してこれらの12個の点の間を次の規則に従って移動する
(i)粒子Pは点ABCDの各点では上下左右のいずれか隣の点へ同じ確率1/4で1秒間で移動する
(ii)粒子Pが×印の付いた点GKのいずれかに達すれば直ちに消滅する
(iii)粒子Pが○印の付いた点EFHIJLのいずれかの点に達すれば以後その点で停止し続ける
出発してからn秒後に粒子Pが消滅する確率をp[n],停止する確率をq[n]とする、このとき、
(1)粒子Pが消滅する確率Σ[n1→∞]p[n],および停止する確率Σ[n1→∞]q[n]を求めよ
(2)粒子Pが消滅するか停止するまでの時間の期待値Σ[n1→∞]n(p[n]+q[n])を求めよ
解説で粒子Pが0,2,4,,,秒後にA,Cにある確率の総和をそれぞれP(S),P(C)とし、1,3,5,,,秒後にB,Dにある確率の総和をそれぞれP(B),P(D)とする 対称性からP(B)=P(D)=xとすると P(A)=1+2x/4,P(C)=2x/4
粒子Pが移動し続ける事象Mの確率はp(M)=1×2/4×1/4×1/4×・・・・=0となっていたのですが、
P(A)=1+2x/4,P(C)=2x/4になるのとp(M)=1×2/4×1/4×1/4×・・・・=0になるのが分かりません
p(M)の式は最初の1は0秒後に必ずAにいるので1、1秒後はAからB,Dのいずれかに行く確率なので2/4ここまでは分かるのですが、2秒後BまたはDからそれぞれAかCに行く確率が1/4になっているのが分からないです、B,Dから次に繋がる場合の数はB,DからそれぞれAかCに行く場合の合計4通りでB,Dからの進み方はB→G,B→F,B→A,B→C,D→A,D→C,D→K,D→Jの全部で8通りです、この中で次につながるのが4通りですから
1秒後から2秒後に繋がる確率は4/8=1/2と思ったのですが、1/4になってて合わないですよね、この考え方はどこが間違っているのでしょうか?