数学の宿題に出てきた途中式です
数学の宿題に出てきた途中式です 2a+2b+3c=15 …(1)
3a+5b+2c=19 …(2)
5a+3b+3c=20 …(3)
(3)-(1)
3a+b=5 …(4)
(1)×2
4a+4b+6c=30 …(1)'
(2)×3
9a+15b+6c=57 …(2)'
(2)'-(1)'
5a+11b=27 …(5)
(5)に(4)を代入する。(b=-3a+5)
5a+11×(-3a+5)=27
5a-33a+55=27
-28a=-28
a=1 …(6)
(4)に(6)を代入する。
3×1+b=5
3+b=5
b=2 …(7)
(1)に(6)と(7)を代入する。
2×1+2×2+3c=15
2+4+3c=15
3c=9
c=3
よって、この連立方程式を満たすa、b、cの値は、a=1、b=2、c=3となる。
以下のURLの三ページと四ぺージ
を見ていただいたらわかると思うのですが、式を加減した際には、式の数を減らしたらいけないと思うのですが…どちらが正しいか教えて下さい。
http://www.akita-pu.ac.jp/system/elect/comp1/kusakari/japanese/teaching/LinearAlgebra/2005/note/4/Slide03.html
1,2,3の式→4,5 の式 は三式から二式になったので、同値ではないということですか?さてここから本題です。この質問をヤフー知恵袋に投稿した所、以下の回答が得られました。
どちらのページも下の連立方程式ですよね?
2x+y=3 …(1)
3x-y=7 …(2)
ただ、3ページ目は2つの式を加算した5x=10を解いたx=2が連立方程式の答えと言っているのです。
なので、式にあるyは存在しなくても一緒だと言っています。
2x=3 …(1)
3x=7 …(2)
この連立方程式が成立すると言っています。
(1)はx=1.5、(2)はx=2.33...なので、違うxの値になるので、両方の式を満たすxの値ではなく、連立方程式は成り立っていません。
一方、4ページ目は、2つの式を加算した5x=10(2)'と元々の式(1)の連立方程式になっていて、x=2でyの値を計算しなさいと言っています。
何気なく頭の中で計算しているので、丁寧に説明されると混乱してしまうのですが、『+yと-yだから、y-y=0で、y=0とかyは計算しなくてイイと決めてしまってはダメですよ』という説明な
なので、式にあるyは存在しなくても一緒だと言っています。
2x=3 …(1)
3x=7 …(2)
この連立方程式が成立すると言っています。
(1)はx=1.5、(2)はx=2.33...なので、違うxの値になるので、両方の式を満たすxの値ではなく、連立方程式は成り立っていません
一方、4ページ目は、2つの式を加算した5x=10(2)'と元々の式(1)の連立方程式になっていて、x=2でyの値を計算しなさいと言っています。
『+yと-yだから、y-y=0で、y=0とかyは計算しなくてイイと決めてしまってはダメですよ』という説明なんです。
〔補足]
方程式は左右が等しい式で、連立方程式は左右が等しい式同士が等しい。
質問の式の右辺を左辺に移すと、
2a+2b+3c-15=0 …(1)
3a+5b+2c-19=0 …(2)
5a+3b+3c-20=0 …(3)
となり、(1)=(2)=(3)になる。
これが、連立方程式です。
なので、すべての式が成立しないと連立方程式ではないので、URLの3ページ目にある、『同値ではない』という表現をされます。
ここからが僕の質問です。A=B=Cの方程式を解くということは、A=B,B=C,C=Aの中から適当に2組選んで解くことと同値であるということは知ってます。この問題集は補足の様に変形して、=0という形にして解いていることを暗黙の了解として省略しているのですか?僕の考え方が間違っているかどうか教えて下さい!ま
また補足にある様に、連立方程式とは三元、四元連立方程式だろうが、=0などするようにして、すべて値が等しいように移行して解くということがそもそも連立方程式の正しい解き方なのですか?
お礼
ありがとうございます。 コチラの回答と一緒にするとできました。 -や+がごちゃごちゃになっていました。 ありがとうございました。