締切済み フーリエ級数の質問なんですが… 2012/07/10 14:38 f(t)=π+t (-π<t<π)をフーリエ級数展開したいのですが、うまく解けません… 解答方法教えてもらいたいです。 よろしくお願いします! みんなの回答 (3) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2012/07/10 19:10 回答No.3 f(t) = a0 + Σ[n=1,∞](an)cos(nt) + Σ[n=1,∞](bn)sin(nt) と置くなら、a0 = 2π にはならない。慣習上、a0 は f(t) = (a0)/2 + Σ[n=1,∞](an)cos(nt) + Σ[n=1,∞](bn)sin(nt) と置くから、A No.2 は勘違いしているんだろう。 a0 = π, an = 0 (when n≠0), bn = (2/n)(-1)^(n+1). 定数項の値については、A No.1 が参考になる。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2012/07/10 15:38 回答No.2 f(t)=a0+Σ(n=1,∞)an*cos(nt) +Σ(n=1,∞)bn*sin(nt) a0=2π an=0(n≧1) bn=(1/π)*2∫[0,π] t*sin(nt)dt(n≧1) を求めれば良いでしょう。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 rnakamra ベストアンサー率59% (761/1282) 2012/07/10 14:47 回答No.1 単にg(t)=t (-π<t<π)をフーリエ級数展開したものに定数項としてπを足せばよいだけですがどこで引っ掛かっているのですか? ノコギリ波のフーリエ級数展開はググればすぐに出てきます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A フーリエ級数について 現在フーリエ級数の問題を解いているんですが、解答がないので答えが合っているか教えて下さい。また間違えていたら解答と解き方を教えてください。 f(t)のフーリエ級数を求めよ。 f(t)=0 (-π<t<0) t (0<t<π) 自分の解答 a0=π/4 , an=(1/2)*cos nπ , bn=(π/2)*sin nπ よろしくお願いします。 フーリエ級数展開についてです。 急いでます。 (1)下の図のような周期2の関数がある。これをf(t)=|t| (-1<t<1)とし、そのフーリエ級数展開を求めなさい。なお、フーリエ級数展開はフーリエ係数を求めそれらの係数を用いて与式を展開すること。 | /\ | /\ _\/__\|/__\/___ -1 1 (2) 上の結果を用いて、Σ 1/(2n-1)^2=(π^2)/8となることを導きなさい。 (n=1~∞) という問題を教えてください。 フーリエ級数展開。 f(x)=0(-π≦x<π),x(0≦x<π) これをフーリエ級数展開するとどうなるのでしょうか? フーリエ級数展開した式が出ません・・・。 答えとしては f(x)=π/4-(2/π)cosx+sinx-sin2x/2-(2/π)cos3x/3~2+sin3x/3-・・・ と解答にはありますが、一般系(?)で表記したいと考えています。 どのようにフーリエ級数展開すればいいのでしょうか? お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素フーリエ級数展開 f(t)=|t|を区間[-π, π]で複素フーリエ級数展開するとどうなるかを途中式を含めて教えてください.解答には途中式が書いてありません. フーリエ級数? f(x)=x (0<x<π)をフーリエ展開せよという問題です。 これを解くときフーリエ正弦級数、フーリエ余弦級数を使い展開するみたいなのですが、 答えしか載ってなくて課程がわかりません・・・。 とりあえず、正弦、余弦級数は求まったのですが、 それをどう駆使してもとめればいいのでしょうか? いまいちわかりにくい質問ですいません。。 フーリエ級数です。 f(x)=x(2-x) (0≦x≦2) 問1)フーリエ余弦級数展開を求めよ。 問2)フーリエ正弦級数展開を求めよ。 これらの答えを教えてください。 お願いいたします。 フーリエ級数展開について 三角波のフーリエ級数展開の係数を求める途中で計算の進み方がわからなく困っています。 次の形が周期Tで繰り返す三角波をフーリエ級数展開せよ。 f(t)=1-(2|t|)/T (|t|≦T/2) という問題なのですが、 anを計算する上で、どのように積分すればいいのか途中式も含めて説明して頂ければありがたいです。どなたかよろしくお願いします。 ジッタを含むフーリエ級数展開 ジッタを考慮すると正弦波が歪むと思うのですがその時のフーリエ級数展開があまりよくわかりません。 もう少し詳しく言うと、「f(t)=sinωt」は普通にフーリエ級数展開できると思うのですが(もちろんωにピーク)、 「f(t)=g(z)*sinωt」の時のフーリエ級数展開です。 私が最初に言ったジッタとはg(z)の事で、例えば1を平均、小さな分散σをもった正規分布などをモデルとしています。このフーリエ級数展開は変数tだけでなくzも考慮して二重フーリエしなくてはならにのでしょうか? また、g(z)はtに対してランダムに変化する(正規分布)のでtだけで考えればいいと思うし、その方が楽なような気もするのですが・・・ ちょっと、自分でも訳のわからない説明になってしまいましたが、どなたかアドバイスの方お願いします。 フーリエ級数教えて下さい f(t)=(1/T)*tを[-T/2,T/2]でのフーリエ級数の式を解いていたら、 答えが(-2/π)Σ_[n=1,∞](1/n)になったんですがあってますか? フーリエ級数がマイナスになるのかどうかよくわからないです。 フーリエ級数の基礎 フーリエ級数はそのグラフが奇関数ならフーリエ正弦級数、偶関数ならフーリエ余弦級数に展開できますよね? そこでf(x)=x(0<x<π)を満たす各xについて f(x)=2Σ(k=0~∞){(-1)^k-1/k}sinkx が成り立つことを証明せよって問題なんですが、 証明する式って言うのは正弦級数展開と同じですよね? でも、奇関数ではないのにこのように展開できるのはなぜですか? あと、これをフーリエ級数に展開するっていうのは ↑の正弦級数と余弦級数を単に足せばいいんですか? いまいちわかっていないので解説おねがいします。 フーリエ級数について フーリエ級数についてわからない問題があるのですが誰かわかる人がいたら教えてください。 問題は「f(x)=sinx (0<x<π) をフーリエコサイン級数に展開せよ」 という問題のとき方がわかる人がいたら教えてください。 お願いします。 複素フーリエ級数の問題が分かりません 複素フーリエ級数の問題が分かりません f(t)は0<=t<T で、f(t)=exp[-at]、0<=t<T をとり、以下これを繰り返す周期Tの周期関数であるとする。 (a>0)この関数を複素フーリエ級数に展開しなさい。 正直なところ答え方もよくわからないので解き方答え方を載せていただけると嬉しいです 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素フーリエ級数を求めよ、と 複素フーリエ級数を求めよ、と 複素フーリエ級数展開を求めよ の違いが最近分からなくなりました。 f(x) = ○○ と与えれた場合、(例えば sinx) それを Cn = C0 + Σ △△ の形に変形するのが 複素フーリエ級数を求めた形になるのでしょうか? ならば複素フーリエ級数展開は…?とこんがらがっています。 どなたか教えてください。 フーリエ級数展開について教えてください。 フーリエ級数展開でAnやBnはf(t)にcosnωt、sinnωtをかけて積分すると求められるのはどうしてですか? のこぎり波のフーリエ級数展開で・・ フーリエ級数の問題で質問させてください。 原点で対称(偶関数、奇関数)になっている関数の フーリエ級数展開の 問題はいくつか解いたのですが、下のような関数 f(t)=(A/T)*t (0<t<T) | | A /| /| ・・・・・・・/ | / |・・・・ / | / | -----------------------------> -T 0 T は、対称となっていないのこぎり波ですが、 どう展開すればよいのでしょうか? フーリエ級数について 次の問題を解いてください。 f(x)を区間-π≦x≦πで連続かつf(-π)=f(π)をみたし、その導関数f'(x)が区分的に連続な関数とする。f(x)が、 F(x)=a_0/2+Σ[n=1,∞](a_n cos(nx)+b_n sin(nx)) とフーリエ級数に展開されるとき、以下の問いに答えよ。 (1)f'(x)をフーリエ級数に展開したときの展開係数をa_n,b_nを用いて表せ。 (2)(1)式の右辺をxで微分し(フーリエ級数の項別微分)、これを(1)と比較せよ。 くわしくお願いします。 フーリエ級数について フーリエ級数について簡単に調べると直流成分+基本波成分+高調波成分の合成によって表すもので、その逆で3つに分解することがフーリエ級数展開だというものでよろしいんですか? また、計算式がインテグラルド?fみたいなやつと、sinを使う2つがあるのですが、どちらを使うべきなのでしょうか? フーリエ級数の求め方。 フーリエ級数展開の問題で [-π,π]の区間で|sin(t)|をフーリエ級数展開せよ。という問題です。 公式に当てはめて a_0 = (1/π)*∫[-π,π] |sin(t)| dtとなって、まずこれを =(2/π)*∫[0,π] sin(t) dtと直せますか? 絶対値がついているのでsin(t)は、π周期になってるのでこう直せると思ったんですが。 次にa_nを求めるのに a_n=(1/π) * ∫[-π,π] (|sin(t)| * cos(nt)) dt これも =(2/π)*∫[0,π] sin(t) * cos(nt) dtとしてしまって問題ないですか? あとこの積分は 部分積分や三角関数の積和の公式を使って解けばいいのでしょうか? フーリエ級数について勉強を始めたばかりで自信がなくて細かいことを聞いてしまって 申し訳ありませんがよろしくお願いします。 フーリエ級数展開の問題の解き方 区間[0,2π]での(sin(t/2))^2をフーリエ級数展開求めろという問題なんですが, a_0=(1/π)*∫[0,2π] (sin(t/2))^2 dt =(1/ 2*π)*∫[0,2π] (1-cos(t)) dt =1 なのはあってると思うんですが, a_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * cos(nt) dt と b_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * sin(nt) dt を解くとどっちも0になってしまいます。 解答ではフーリエ級数展開したのは,(1/2) - (1/2)*cos(t)となっているんですが -(1/2)*cos(t)はどこからでてきたのでしょうか? よろしくおねがいします。 フーリエ級数の問題です。 フーリエ級数の問題です。 (1)、αはZの要素ではないとする。f(x)は周期2πの関数で、f(x)=cosαx、(-π<x≦π)を満たすとする。R上でフーリエ級数に展開せよ。 (2)、得られたフーリエ級数にx=0を代入し、1/sinπαをあらわす級数をもとめよ。また、得られたフーリエ級数にx=πを代入して、1/tanπαxをあらわす級数をもとめよ。(どちらとも、部分分数分解) よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など