ベストアンサー 数学の質問です。 2012/05/21 16:50 次のように、式を変形することが出来ますか? f(x)=x,g(x)=sinx g(x)・f(x)=sinx・x=x・sinx==xsinx 宜しくお願いします! みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー noname2727 ベストアンサー率35% (40/112) 2012/05/21 17:37 回答No.1 できます^^ 質問者 お礼 2012/05/31 00:49 ありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の質問です。 (sinx)^2=(sin^2)x=sin^2x=(sinx)・(sinx) と式変形出来ますよね? 数学の問題です f(x)=xsinx の導関数を求めよ、という問題なのですが f'(x)=sinx+xcosx になると書いてありました。 導関数は t に置き換えるとわかりやすい、と習ったのですがこの問題の場合 何を t に置き換えているのでしょうか? 微分したら、cos だけになるのでは??と思ったのですが。。。 わかる方、解説お願いします。 極限値を求める問題について質問です。<数学> <問> 次の極限値Aを求めよ A=lim[x→0](1/x - 1/sinx) * 1/(e^x-1) いろいろ試行錯誤してみましたが、解答が得られません。 途中の式変形など含めてよろしくお願いいたします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学III 定積分の問題を教えて下さい!! 問 次の各問に答えよ (1)略 (2)定積分 ∫<0、π> {(xsinx)/(1+cos^(2)x)} dx の値を求めよ。(ただし、∫<a、b> f{x} dxとは「f(x)のaからbの定積分」を表しています。) という問題なのですが、解き方を教えて下さい。 また、どうしてそういう解き方が思いついたのかも教えていただけると有り難いです。 因みに(1)で等式∫<π/2、π> {xf(sinx)} dx = ∫<0、π/2> {(π-x)f(sinx)} dx (但しf(x)は閉区間[0,1]で連続)を証明しています。 回答よろしくお願いいたします!! sinx+xcosx の導関数について f(x)=xcosx+sinxの導関数を求めよ、という問題なのですが、 答えが 2cosx-xsinx になるみたいです。 途中式を見ると、f'(x)=(x)'・cosx+x・(cosx)'+(sinx)' とあるのですが、 なにか公式を当てはめているのでしょうか? なぜ、こうなったのがわからなかいのでお願いします。 関数の極限について 見辛くて申し訳ないです。 lim (cosx -1)/(xsinx) x→0 の極限を求める問題なのですが。 (sinx)/x →1 (x→0)と (1+cosx)/x^2 →1/2 (x→0)を使って解くと (cosx-1)/xsinx=(cosx-1+1-1)/xsinxの変形から-∞になるのですが、 解答は 両辺に1-cosxを掛けて分子を(sinx)^2にして-1/2となっていて どうしても答えが合いません。 (解答にあわせた解法で解いても納得できません) どうすると-1/2に収束するのか教えて下さい。 専門的な質問ですみません。数学の問題なのですが、 専門的な質問ですいません。数学の問題なのですが…。 問:微分可能な実数値関数f(x)、g(x)が、次の3式、 f(x+y)=f(x)g(y)+f(y)g(x) g(x+y)=g(x)g(y)-f(x)f(y) {f'(0)の二乗}+{g'(0)の二乗}=1(すみません二乗が変換できませんでした) を満たすとき、f(0)=0、g(0)=1をまず示し、次に、 g'(x)=g'(0)g(x)ーf'(x)f(x) f'(x)=f'(0)g(x)+g'(0)f(x)を導いた後、 連立微分方程式 g'(x)=-f(x)、f'(x)=g(x)が成り立つことを示し、それらの初期値問題 f(0)=0、g(0)=1の解が、 f(x)=±sinx g(x)=cosx となることを証明せよって言うんです。微分方程式の解の存在と、一意性に関する定理を直接利用してはだめだと言われました。 どなたか助けてください。お願いします。 数学 積分 (1)F(x)が0≦x≦1で連続な関数である時、∫xF(sinx)dx=π/2∫F(sinx)dxが成立することを示し、 ∫xsinx/3+sinx^2・dxを求めよ。 積分区間はすべてπから0までです。 t=π-xと置くのか定石とか書いてありますが、なぜこういうことをするのですか? それと、成立することを示した後、なぜsinx/3+sinx^2をF(sinx)と置くのでしょうか? これはそうしないと解けないのですか? 詳しくお願いします。 (2)∫|1-√2-2sinΘ^2-2√3sinΘcosΘ| 積分区間πから0を求めよ。 絶対値の中を2cos(2Θ+3π)-√2にして、それで(2Θ+3π)をtとかおいて積分区間を7π/3, π/3まではわかるんですが、それから解説だと、9π/4からπ/4までを積分すればいいとなっていますが、なぜでしょうか? 周期関数はどこから区間を始めても、定積分の値は等しいとなっていますが、なぜですか? 周期関数とはsin,cosだけでで表されてるものだけをいうのでしょうか? それ以外に周期的な関数というのは存在するでしょうか? 解説お願いします。 数学についての質問です。 添付した画像中の3行目から4行目への式変形についての質問です。 F(x,y)にはΣが含まれているのに、F(x,y)を代入したあとの式では消えているのでしょうか?下の方の式でG(x,y)を代入したところでも同様にΣが消えています。 もしよろしければ、F(x,y)にsin(mπx/a)・sin(nπy/a)をかけて、xとyでそれぞれ0→aまで積分することでDmが導き出せる原理も教えてください。 http://www.fastpic.jp/images.php?file=5751812154.jpg 数学の質問 いくつかありますが、お願いします。 1 Σ(k=1→∞)*1/nは発散するということを示すにはどうすればいいでしょうか。それと、感覚的に理解するのは無理でしょうか。区分旧蹟法で見ると収束するように思えます。 2 limの微分の定義式にh→0のものとx→aの2種類が教科書などに載っていましたが、どうやって変形しているんでしょうか。h=~~とかおいているのだと思いますがよくわかりません。 3 大学受験でマクローリンを使うのは反則でしょうか。 ただし、cosx=1-x^2/2!などはx-2についてとき、極限を使って強引に証明をします。ようはいきなりこの式を思いつくこと自体が不自然だと判断され減点されるかどうかです。 4 sinx/x→1という公式がありますが、これを問題文中で使うとき括弧書きで、これはx=0付近での微分係数が一致することを意味する、などという余計なことを書くと採点者はどう思うでしょうか。 5 {f(a+3x)}'=f'(a+3x)*3となるのは、合成関数の微分を使っているのはわかりますが。いまいちシック着ません・・・ 以上をよろしくお願いします。 数学IIICです!お手数ですがお願いいたします! 1 無限等比級数 eの-x乗sinx+eの-2x乗×(sinx)の2乗+eの-3x乗×(sinx)の3乗+…を考える。0≦x≦2πのとき次の問いに答えよ (1)この級数は収束することを示せ (2)この級数の和をf(x)とするとき、f(x)の最大値、最小値を求めよ 2 aは実数の定数としf(x)=ax+eの-x乗×sinx g(x)=eの-x乗×(cosx-sinx)とする (1)y=g(x)(0≦x≦2π)のグラフの概形をかけ。 (2)f(x)が区間0<x<2πで極小値を持たず極大値をひとつだけ持つときaの取り得る値の範囲を求めよ 数学 積分法 数学でわからない問題があります。 cos^3xsinxを積分したいのですが、うまくいきません。 私が考えたのはこういうものです。 sinx=tとおく。cosxdx=dt cos^3xsinx=cos^2xcosxsinx また、cos^2x=1-sin2xより ∮cos^3xsinx dx=∮(1-t^2)t dtとなる。 よって1/2t^2-1/4t^4+Cより 1/2sin^2x-1/4sin^4x+C (Cは積分定数) こうしたのですが違いました。 cosx=tとすると解答と一致し、 -1/4cos^4x+C となりました。 sinx=tのやり方のどこが間違っているのかわかりません。 教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学の質問 いくつかありますが、簡単なものばかりだと思います。でも、分からないので、よろしくお願いします。 1 a<3≦3/2a が 2≦a<3 と変形できるみたいですが、過程を教えてください。 2 x>aのときf(x)>0を証明したい。そのためには x>aでf'(x)>0かつf(x)≧0を示せばよい。とありますが f(x)≧0はいらないのではないでしょうか。 3 y=g(x)=x^3-2ax^2+a^2x-4/27a^3について考えます。 y=4/27a^3はx=a/3において接するので、g(x)は(x-a/3)^2で割り切れる。なぜこれがいえるのでしょうか。 式変形について。 式変形について。 問題と解答は図にupしました。 (1) |sin(x+h)-sinx|が=の次の式に変形できるのかがわかりません。 (2) 式変形の最後の|h|からh→0のとき、|sin(x+h)-sinx|→0であるといえるのはどうしてですか? よろしくお願いします…(><)! 数学の問題がわからないので教えてください 次の数学の問題の解き方を教えてください。 F_1(x)=sinx+cosx, F_n+1(x)=F_n(x)F'_n(x) のとき (1)F_n(x)を正弦にに直せ。 (2)mを正の整数とするとき、F'_4m(0)の値を求めよ です。 途中式もお願いします 数学の質問です 整式f(x)と g(x)の間にx^4f(x)=(x-1)g(x)という関係が成立する。f(x)は二次式であり、g(1)=1が成立する。このとき、g(x)-1が(x-1)^2で割り切れるとき、f(x)を求めよ。 よろしくおねがいします。 答え:)=-4x^2+9x-5 部分積分の仕方 ∫1/{(a-x)(b-x)}の仕方が分からず解説を見たら画像のように部分積分をしたら求まるよ。 と書いてありましたが理解できませんでした。 一応統計とかで使う超簡単な部分積分の解釈は出来ているのですが どうして部分積分からこのような式に変形できるのかがわかりません。 たとえばxcosxとかなら x(sinx)'としてxsinx-∫1・sinxとかで求めるのが部分積分ですよね。 なんで(b-a)が外に出てるのかそれすら理解できてません。お恥ずかしいですが、わかりやすくご指導お願い申し上げます。 合成関数の質問 よろしくお願いします。 微積分の問題で 関数y=xe^sinxは関数y=xとy=e^sinxとの積であり、関数y=e^xsinxはy=e^tと関数t=xsinxとの合成関数である これってあっていますか? 関数y=xとy=e^sinxとの積って単純にy=xにe^sinxをくっつけるだけですか? 「関数y=e^xsinxはy=e^tと関数t=xsinxとの合成関数である」は指数tに代入するだけなのであってると思うんですけど・・。 次の問題の解き方を教えてください。 「f(x)=(1+sinx)cosx (0≦x≦2π)の最大値と最小値」 f(x)を微分しf´(x)=cos^2x-sin^2x+sinxになりましたが、ここからどのように式を変形すればよいか分かりません。ご回答よろしくお願いします。 高校数学、sin、cosの問題 数学の式変形で (1-cosx)/(x^2) = (sinx)/(2x) というのがどうして可能なのかよくわかりません。 何の公式を使うと良いのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました!