- ベストアンサー
数学IIIの定積分あたりの問題です
n =≧2の時、次の不等式が成り立つことを示せ。 1)1+√2/1+√3/1+…+√n/1<2√2-1 2)nlogn-n+1<log1+log2+log 3+…log n 回答 1)y=√x/1は減少関数でk<x<k+1のとき √k+1/1<√x/1より… とあるのですが、よりは一体どこから導きだされたのでしょうか。 参考書の回答がいまいち理解できません。どなたか詳しく教えて頂けないでしょうか。お願い致します!!
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
♯1です。 例えば 2√(n+1) -2<1+(1/√2)+(1/√3)+・・・・・(1/√n) のように1+(1/√2)+(1/√3)+・・・・・(1/√n)が大きくなる評価をするときは(1/√x)<(1/√n) を使います。 示すべき式をみて判断できませんか。
その他の回答 (1)
- 151A48
- ベストアンサー率48% (144/295)
1)は問題がおかしくありませんか?√x/1は√xが分子,1が分母,の意味になりますが・・・。 1+(1/√2)+(1/√3)+・・・・(1/√n)<(2√n)-1 ではないのですか。もしそうなら以下の方針。 x<k+1なら√x <√(k+1) 逆数にすれば大小が逆転し1/(√(k+1))<1/(√x) 両辺x:k→k+1で積分し,k:1→n-1の総和をとる。 最後に両辺に1をたす。 2) nlogn -n+1 はlogxのt:1→nの定積分。 y=logx とx軸,x=nの囲む面積と,それを上から囲む幅1の短冊の面積の和,の比較。
お礼
ご回答ありがとうございました!! まだ理解できない箇所がありまして…上記の疑問です。教えて頂けますでしょうか。
補足
問題の入力ミスでした。ご指摘ありがとうございます。 続けて教えていただきたいのですが k<x<k+1の逆数は 1/(k+1)>1/x>1/kですが、問題集の回答は1/(k+1)>1/xを基に解説しています。 1/x>1/kを基にしては正解が得られないのでしょうか? 何で1/(k+1)>1/x>1/kを基に解説するのかそこがわかりません。 それとも、どちらでも同じ答えになるのでしょうか。 私の計算では異なる結果となりましたので、上記の疑問があります。
お礼
示すべき式で理解できました!!助かりましたありがとうございました。 また困ったときはご教授お願い致します!!