ベストアンサー ベクトルの問題です。 2012/05/06 22:09 △ABCの辺ABの中点をD、辺ACを2:3に内分する点をE、線分CDとBEの交点をPとする。 ベクトルAB=a、ベクトルB=bとしてベクトルAPをベクトルa、ベクトルbであらわしてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ferien ベストアンサー率64% (697/1085) 2012/05/06 22:53 回答No.1 >ベクトルB=bとして ベクトルAC=bとして、ですよね。 辺ABの中点をD だから、 AD=(1/2)AB=(1/2)a 辺ACを2:3に内分する点をE だから、 AE=(2/5)AC=(2/5)b C,P,Dは一直線上にあるから、 CP=mCDより、 AP-AC=m(AD-AC) AP=mAD+(1-m)AC=(1/2)ma+(1-m)b ……(1) B,P,Eは一直線上にあるから、 BP=nBEより、 AP-AB=n(AE-AB) AP=(1-n)AB+nAE=(1-n)a+(2/5)nb ……(2) (1)と(2)を係数比較すると、 (1/2)m=1-n, 1-m=(2/5)n これを連立方程式で解くと、 m=3/4,n=5/8 (1)か(2)に代入して、 よって、 AP=(3/8)a+(1/4)b 何か分からないところがあったら、質問して下さい。 質問者 お礼 2012/05/06 23:00 ありがとうございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 線形 △ABCの辺ABの中点をD、辺ACを2:3に内分する点をE、線分CDとBEの交点Pとする。 ベクトルAB=ベクトルa、ベクトルAC=ベクトルcとしてベクトルAPをベクトルa,ベクトルbであらわしてください。 三角形のベクトルについて教えて下さい。 △ABCにおいて、辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとし 線分CD、BEの交点をPとする。 (1)APベクトルをABベクトル、ACベクトルを用いて表せ。 (2)AB=3、AC=4、AP=√7のとき、∠BACの大きさを求めよ。 この問題の解き方と解答を教えて下さい。 チェバ・メネラウスの定理などを使うらしいです ベクトルの問題です。 三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトルの問題です。教えてください! 三角形ABCがあり、AB=AC=√3、cosA=2/3である。辺BCの中点をDとする。 辺ABを2;1に内分する点をEとし、線分ADを直径とする円をKとする。 直線DEとKの交点のうち、D以外の点をFとする。点PがK上をうごくとき、 内積AF・APの取りうる値の範囲を求めよ。 (ベクトルは省略させていただきます) どうやって考えたらいいのか分かりません。 詳しく教えてください! よろしくお願いします。 ベクトルの問題なのですが・・・・・ 三角形ABCがあり、AB=AC=√3、cosA=2/3である。 辺BCの中点をD、辺ABを2:1に内分する点をEとし、線分ADを直径とする円をKとする。 直径DEとKの交点のうちD以外の点をFとする。 点PがK上を動くとき、内積AF・APの取りうる値の範囲を求めよ。 ベクトルは省略させていただきます。 どうやって求めたらいいのかが分かりません。 教えてください!! ベクトルに関する問題です。教えてください! 三角形ABCがあり、AB=AC=√3、cosA=2/3 である。辺BCの中点をD、辺ABを2:1に 内分する点をEとし、線分ADを直径とする円をKとする。直線DEとKの交点のうち D以外の点をFとする。点PがK上を動くとき、内積AF・APの取りうる値の範囲を求めよ。 ベクトルは省略させていただきます。 点PがK上を動くとき というところをどのように考えて解けばいいのか分かりません。 詳しく解説していただけると嬉しいです!! よろしくお願いします! 数学 平面ベクトル 解き方を教えてください (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。 ベクトル問題 続けて投稿申し訳ありません。質問させていただきます。 ベクトルの問題で、 aは0<a<1 をみたすかずとする。辺AB,ACの長さが等しい二等辺三角形ABCに対して辺ABを1:5に内分する点をP 辺ACをa:1-aに内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交点をRとする。 (1)ベクトルAK、ARをベクトルAB,ACであらわせ という問題で、 (以下のABなどの表記はベクトルABを意味するとする) AR=(1-a)AB/(4a +1) + (5a)AC/(4a+ 1) メネラウスで KA/RK=(4a +1)/(5-5a)まででました。 しかし解説では次に KA=(4a +1)AR/(5-5a+4a+1) と、RKがいきなりARに、そして分母にいきなり4a+1がたされています。この部分が不可解なのでアドバイスを求めています。 どうぞよろしくお願いします。 ベクトルAPを求める問題 ベクトル、APを求める問題。。おねがいします!! 三角形ABCにおいて、BCの中点をD、ABを2:3に内分する点をEとして、ADとCEの交点をPとする。 AB=a、AC=bとしてAPをa,bであらわすと、AP=□分の□a+□分の□bを解け。 この前受けた、センター風の模試の一部です。APを求めるのには、たすきがけで、tやsにおきかえて解くものだと、それで頑張ってみたのですが、解答なくしたせいかわからないです、、、そのあとの問題は比率とかだったので、これができればいけそうなのですが。。。 解答お願いします!!解説を特に!! ベクトル 三角形ABCにおいて、AB=8、AC=6、角BAC=60°である。 辺ABの中点をM、辺ACを1:2に内分する点をNとすると、 ベクトルAM=ア/イベクトルAB、ベクトルAN=ウ/エベクトルAC であ る。 また、ベクトルABとベクトルACの内積は ベクトルAB・ベクトルAC=オカ である。 点Mを通り辺ABに垂直な直線と点Nを通り辺ACに垂直な直線との交点をPとする。 s、tを実数として、ベクトルAP=sベクトルAB+tベクトルACとおくと ベクトルMP={s-(キ/ク)}ベクトルAB+tベクトルAC であるから、AB垂直MPより ケs+3t=コ であり、同様にAC垂直NPより サs+3t=シ である。したがって s=ス/セ、t=ソ/タ である。 さらに、直線APと直線BCの交点をQとおくと BQ:QC=1:チ/ツである。 ベクトル苦手なので、全然わかりません… 助けてください>_< よろしくお願いします ベクトルの問題です。 ベクトルの問題です。 一辺の長さが1の正六角形ABCDEFの辺BCの中点をMとする。辺DE上に∠AMP=π/2となる点Pをとり、線分APとMFの交点をQとする。AB=a、AF=bとおいて次に答えよ。 1、AMをa、bを用いて表せ。 2、APをa、bを用いて表せ。 3、線分AQとQPの長さの比を求めよ。 という問題なのですが、2からつまずいてしまいました…。 ヒントだけでも教えていただけないでしょうか、宜しくお願いします。 ベクトルの問題です。 ベクトルの問題です。 △ABCの内部に点P,Qがあり、 →AP=a/a+7→AB+3/a+7→AC →AQ=1/b+4→AB+b/b+4→AC (1)返BC上にBD:DC=1:2,BE:EC=2:1となる点D,Eをとる。aとbがそれぞれ何のときに、点Pは線分AD上に、点Qは線分AE上にあるか。 (2)さらに|→AB|=4、|→AC|=3、→AB*→AC=2 のときの|→AP|と|→AQ|を求めよ。 面倒くさいと思いますが、なるべく詳しくお願いしますm(__)m! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトル問題!! 平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、 「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。 という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。 ベクトル △ABCにおいて、辺ABを3:1に内分する点をD、辺BCを2:3に内分する点をEとし、線分CDと線分AEの交点をFとする。ベクトルAB=ベクトルa、ベクトルAC=ベクトルbとして (1)線分DCをt:(1-t)に内分するとして、ベクトルAFをベクトルaとベクトルbを用いて表せ (2)3点A,F,Eが一直線上にあると考えて、ベクトルAFをベクトルaとベクトルbを用いて表せ (3)ベクトルAFをベクトルaとベクトルbを用いて表せ という問題があります (1)は ベクトルAF=(1-t)ベクトルAD+t×ベクトルAC =(3/4)(1-t)ベクトルa+t×ベクトルb と解けたんですが 2と3が先に進めません どうやってすればいいでしょうか 高校の数Bの平面ベクトルのところです このベクトルの問題を教えてください。 このベクトルの問題を教えてください。 問題は 平面上に三角形ABCがあり、実数tが0≦t≦1の範囲で動くとき、 APベクトル+2tBPベクトル+(1-t)CPベクトル=0ベクトルをみたす 点Pの軌跡を求めよ。 です。 僕はまず、ベクトルの始点を原点にそろえて、Pベクトルについての方程式を立てたんですが、その先がわかりません。 何回も計算しても答えが合いません。 ちなみに答えは 線分ABを2:1に内分する点と線分ACの中点を結んだ線分 です。 平面図形とベクトル △ABCにおいてA(a→)、B(b→)、C(c→)とする。次の点の位置ベクトルをa→、b→、c→で表せ。 (1)線分BCを1:2に内分する点R(r→) (2)線分ABを3:2に内分する点P(p→) (3)線分APの中点N(n→) (4)線分PMを1:3に内分する点U(u→) (Mは線分ABの中点) (5)線分RSを3:1に内分する点V(v→) の五題がよくわかりません。 答えを教えてください。 ベクトルの問題2 三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について △ABC=○ △ABE=○ (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。 ベクトルの問題です(大問2つあります‥) ≪1≫平面上に点Oを中心とする半径5の円がある。その周上に4点A,B,C,Dがこの順序にあり、 ↑OA=-↑ODが成り立つ。線分ABとDCの長さがそれぞれ4,5で、ACとBDの交点をPとする。 (1)↑OA・↑AB (2)cos∠APB (3)↑AB・↑DC ≪2≫aを正の実数とする。三角形ABCの内部の点Pが 5↑PA+a↑PB+↑PC=↑0 を満たしているとする。 (1)このとき、↑APを↑AB,↑AC,aを用いて表せ。 (2)直線APと辺BCを1:8に内分するならば、aはいくつになるか。また、↑AP=○/□↑AD の○,□に入る数を答えよ。 (3)このとき、点Pは線分ADをどのように内分するか。 といった問題です。どちらか一問でもいいのでよろしくお願いします。 (ちなみに、≪1≫はDAの延長線上に↑OA=↑AEとなるような点Eをとってみたのですがうまくいきませんでした‥) 高校生レベルの数Bの問題です 自分はとても馬鹿で数Bの問題が解けません。自力でだいぶ頑張りましたがこの4問だけどうしても解けません。誰かお力を貸してください…涙 1、△ABCにおいて、辺ABを3:1にする点をD、辺ACを2:3に内分する点をEとし、線分BEと線分CDの交点をPとする。ベクトルAB=ベクトルb、ベクトルAP=ベクトルcとするとき、ベクトルAPをベクトルb、ベクトルcを用いて表せ 2、AB=4、BC=3、CA=2である△ABCにおいて、∠Aの二等分線が辺BCと交わる点をD、∠Bの二等分線が辺ADと交わる点をIとする。 (1)ベクトルADをベクトルAB、ベクトルACを用いて表せ (2)ベクトルCIをベクトルAB、ベクトルACを用いて表せ 3、直線x-√3y+3=0と直線√3x+3y+1=0がなす鋭角aを求めよ 4、3点A(-1、6)、B(3、-2)、C(5、3)にたいして次の直線の方程式をベクトルを用いて求めよ (1)点Aを通り、ベクトルd=(5、3)に平行な直線 (2)2点A、Cを通る直線 (3)点Aを通り、直線BCに垂直な直線 よろしくお願いします涙 数学IIBの問題 高校数学IIBの問題です。ベクトルの問題です。解答解説をよろしくお願いします。 aを正の実数とする。三角形ABCの内部の点Pが5PAベクトル+aPBベクトル+PCベクトル=0ベクトルを満たしているとする。このときAPベクトル=a/a+1⃣ABベクトル+2⃣/a+3⃣ACベクトルが成り立つ。直線ABと辺BCとの交点Dが辺BCを1:8に内分するならば、a=4⃣, APベクトル=5⃣/6⃣7⃣ADベクトルとなる。このとき点Pは線分ADを8⃣:9⃣に内分する。さらに|ABベクトル|=2√2、|BCベクトル|=√10、ACベクトル=√6ならば、ABベクトル・ACベクトル=(10)である。 したがって、|APベクトル|²=(11)(12)(13)/(14)(15)となる。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます