- ベストアンサー
数学の多項式の除法の問題
1/(x-1)x+1/x(x+1)+1/(x+1)(x+2) この問題の解説に、「前から順に加えても良いが、各項の分数式の差に変形する方法もある」 とあったのですが、この方法がイマイチ理解できません。 なぜ差なのですか。この方法の仕組みを教えてください。 後これはどのような式のときにつかえるのですか
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
>(1/a)-1/(a+1) この式を通分してみると、どうなりますか?
その他の回答 (3)
- alice_44
- ベストアンサー率44% (2109/4759)
回答No.4
A No.2 のカラクリを理解すれば、 Σ[k=2…n] 1/((k-1)k) とかの計算に使えるよね。
- hashioogi
- ベストアンサー率25% (102/404)
回答No.3
Q. 1/(a(a+1))=(1/a)-1/(a+1)をつかって、どうやって差だということがわかるのですか。 A. a-bはaとbの差になります。(1/a)-1/(a+1)は(1/a)と1/(a+1)の差になります。それだけの話です。
- asuncion
- ベストアンサー率33% (2127/6290)
回答No.1
一般に、 1/(a(a+1)) =(1/a)-1/(a+1) となるからです。 与式 =(1/(x-1)-(1/x))+((1/x)-1/(x+1))+(1/(x+1)-1/(x+2)) と、各項の分数式の差に変形できます。
補足
すいません。。基本ができてないんです。。1/(a(a+1)) =(1/a)-1/(a+1)をつかって、どうやって差だということがわかるのですか。。