数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(
宜しくお願い致します。
[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?
お礼
なるほど。ありがとうございました。