• 締切済み

数値解析の手法(差分法)について

現在、とある2元の1階偏微分方程式(解はu,vでそれぞれ右と左に進行する波)を数値解析によって解こうと考えています。 数値解析の手段として、差分法がよく用いられると思いますが、 現在、私は、場所に関してはuは後退差分、vは前進差分を使い、 時間に関しては前進差分を使って解いています。 ネットでは場所に関しては中心差分、時間に関してはルンゲ=クッタやリープフロッグなどが 使われていることが多く、私もこの2つを用いて解いてみました。 偏微分方程式には線形項が含まれていたため、 線形問題に対する制約であるΔt/Δx << 1は最低満たすように刻み幅をいろいろ取り、 計算時間も辞さず計算機を動かしてみましたが、 ノイズが消えず、解析解に限りなく近づくには至りませんでした。。 Δt/Δx=0.0001なども試したのですが・・・ そこで、諦めて違う差分法を試し、 場所に関して、uは後退差分、vは前進差分を使い、 時間に関しては前進差分を使って見たところ、 Δt/Δx=0.01程度で解析解に近い、なかなか精度の良い数値解を得ることが出来ました。 2次の差分では上手くいかず、1次の差分だとわりかし上手くいく・・・ 精度的には中心差分やルンゲ=クッタなどの方がいいと思うのですが・・ 正直不思議でなりませんでした。。。 最初に試した差分法のコードミスかと思い、何回もコードを確認し直しましたが、 やはり解析解に近づくには至りませんでした。 こんなことってあるのでしょうか?? 差分法でも場合によって使い分ける必要があるということでしょうか・・? その場合分けするときの指標など、知っておられる方、教えて頂けると助かります。 問題によって

みんなの回答

  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.1

波動方程式は通常2階ですが1階というのはどういうことですか。

関連するQ&A