• ベストアンサー

円の回転

こんにちは。苦手な図形に取り組んでおります。 よろしくお願いします。  xy平面上に原点を中心とする半径3の大円がありそれに接する  半径1の小円が滑らずに大円の周りを2周する。  小円の内部に図のように矢印が描かれている場合、  この矢印は平面に対して何回回転したことになるか?  と言う問いなのですが1:3という事は単純に3周するのかと思いきや、  解答は4周なのです。    解答は角度で説明をしていたのですが今ひとつ理解出来ませんでした。  (写真が2枚添付できなかったため、解答の説明なしですが大丈夫でしょうか?)  どなかたご教授ください。よろしくお願いします。    

質問者が選んだベストアンサー

  • ベストアンサー
  • nattocurry
  • ベストアンサー率31% (587/1853)
回答No.6

大円の周と同じ長さの直線の上?を滑らずに移動、つまり転がるとすれば、矢印は3回転します。 ですが、転がる道路?自体が1回転しているので、その上を転がる円もその分多く回転することになります。

korun8040
質問者

お礼

単純明快でわかりやすかったです、 いつも思うのですがなぜ参考書ってもっとわかりやすく 書いてくれないのでしょうね・・^^ ありがとうございました^^

その他の回答 (5)

  • hrsmmhr
  • ベストアンサー率36% (173/477)
回答No.5

No3ですrは直径ということにしておいてください

  • hrsmmhr
  • ベストアンサー率36% (173/477)
回答No.4

小円の中心は大円を一周するまでに2π(3+1)r進みます 一方回る円周角をθとすると進む距離はrθ進むことになるので θ=8πで4周になると思います 多分大円2周だと8周になると思うのですが

korun8040
質問者

お礼

そうです、朝にあわてて書いて間違っていました。 8周が正解です。 ご丁寧にありがとうございました^^

noname#152422
noname#152422
回答No.3

1番ですが、6-2=4は間違いで、6+2=8でした。 線分を元の円に戻すのは小円を転がすのと同じ向きでしたので。 大変失礼しました。 あなたがもっている解答が間違っている模様です。

korun8040
質問者

お礼

下のほうに小さく8周と記載されていました。 失礼しました><

  • Cupper-2
  • ベストアンサー率29% (1342/4565)
回答No.2

考え方は良いのですが、致命的なうっかりが一つ。 大きい円を2周するんですよ。 ですので質問者さんの考え方であれば、本来は6周と言う答えが出ないと…。 ■本題。 小さい円の大きい円に接する部分がちょうど半周した状態は図のようになります。 大きい円と小さい円が接する部分が、大きい円の円周の 1/6 の位置ですね。 あとは前のかたの解答を読むと質問者さんも気づくと思います。

korun8040
質問者

お礼

何とか理解出来ました。 いつも図形ありがとうございます^^ 小円が回転しつつ大円も回転、どう回転するのか考えると 私の固い頭はおかしくなりそうです。。。>< ありがとうございました^^

noname#152422
noname#152422
回答No.1

大円の1点を切断したものを2つ用意してつなげると、長さが2π×3×2の線分ができます。 その端Aから端Bまで小円を転がすと、小円は何回回転するでしょうか。 その回転数をnとすると、 2πn=2π×3×2 となります。これを解いてn=6となります。 大円の形状を元の円に戻すには、その長さ2π×3×2の線分の端Aを固定して他方の端B(今は小円が乗っかっている)をもって2回くるくる回転することになります。 これに伴って小円は2回回転しますが、AからBへ移動したときの回転とは逆向きになるので、トータルで6-2=4回転となります。

korun8040
質問者

お礼

早々の解答ありがとうございます、 理解力が乏しくなかなか理解出来なかったのですが 他の方の解答をよんでおっしゃられている事が ようやく理解出来ました^^ ありがとうございました^^

関連するQ&A