ベストアンサー 2次関数ついて 2011/07/19 19:57 y=x^-4xをy=a(x-p)^+qの形にして、またそのグラフも書くのですが、 グラフはこれでいいのか教えてくれますか。 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2011/07/19 20:38 回答No.3 大体合ってるけど、 添付した図のように描くといいね。 特に頂点(2,-4),x軸との交点(0,0)と(4,0)の位置は正確に描かないと 減点されるよ。 画像を拡大する 質問者 お礼 2011/07/19 21:08 なるほど!画像付きの回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) nattocurry ベストアンサー率31% (587/1853) 2011/07/19 20:21 回答No.2 頂点の位置はあってるけど、x=-1,0,4のときのyの値があってないので、私が採点者ならそこが減点対象かな。 質問者 お礼 2011/07/19 20:48 具体的な回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#157574 2011/07/19 20:16 回答No.1 御名答! 質問者 お礼 2011/07/19 20:45 なるほど!回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 二次関数 y=ax^2+bx+c を y=a(x-p)^2+q の形にするには? 二次関数 y=2x^2-4x+3 や y=-x^2+3x-1 などを y=a(x-p)^2+q の形にしたいんですが 参考書に書いてある解説を読んでも理解できません。 y=a(x-p)^2+q の形にしてしまえば、それからグラフを描けるんですが どうすれば y=a(x-p)^2+q の形に出来るのか分かりません。 教えてください。 よろしくお願いします。 関数 2次関数y=x^2-ax+9のグラフがx>0の範囲でx軸と接するときのaの値を求めよ。さらにこのグラフをx軸方向に-2、y軸方向にpだけ平行移動すると、x軸とはx=-1とx=qで、y軸とはy=rで交わる。p、q、rの値を求めよ。 aの値とx軸方向に-2、y軸方向にpだけ平行移動なのでy=(x-1)^2+pのグラフになるのは分かりました。このグラフがx=-1で交わるならx=q=3でも交わる。これはどう考えたのでしょうか(*_*) 2次関数のグラフ y=a(x-p)^2+qのグラフは、y=ax^2のグラフをx軸の方向にp、y軸の方向にq平行移動した放物線ですが、pとqの±はどうやって判断しているのですか? 例えば、y=2(x+1)^2-3は、y=2x^2のグラフをx軸に-1、y軸に-3平行移動させたもので、頂点は(-1,-3)です。 y=-2(x+2)^2+3は、y=-2x^2のグラフを、x軸に-2、y軸に3移動させたものです。 教科書無くしちゃってて・・・お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 二次関数 y=x^2というグラフを平行移動して、頂点がy=x+1上にあって、(0,7)を通る式を求めたいです。 平行移動の時は、y=(x-p)^2+q という形にしたら、できるかと思ったのですが、頂点(p,q)に y=x+1 をどう入れたらよいのでしょうか? 頂点(y-1,x+1)でいいのでしょうか? また、この後は(0,7)をどのように使えばよいのでしょうか? 一番簡単な方法を教えて欲しいです。 二次関数 二次関数を教えて下さい。(>_<) y=a(x-p)二乗+qのグラフについて、軸が直線x=2で、2点(1,1)、(4,7)を通るようにa,p,qの値を求めなさい。 という問題です。 途中まで解いてみたのですが解りません。(>_<) 二次関数グラフの平行移動 数学から遠ざかり早10年ですが 参考書片手に勉強している者です。 試験の問題だったため答えは分かりませんが 手法のほど導いてくれませんか? --------------------------------------------- 2次関数 y=2(x-1)(x+p) (ただしp>0) について このグラフが y=2x~2のグラフをy軸方向については -8だけ平行移動したものであるとき、 pの値を求め、またx軸方向についてはどれだけ 平行移動したものかを答えなさい。 --------------------------------------------- 今私が分かるのは下の3つの公式です。 y=ax~2+bx+c …通る3点が分かる場合 y=a(x-α)(x-β) …x軸との交点が(α,0)(β,0) y=a(x-p)~2+q …頂点が(p,q)、軸がx=p 答えについては グラフの形と頂点(x,-8)という想像ができます。 どうぞ宜しくお願いいたします。 数1 二次関数 回答を見てもよく理解できないので、教えて下さい。 2次関数y=-3x^2+x-2のグラフを、x軸方向に4、y軸方向に5平行移動した時の放物線の方程式を求めよ。 回答:Y=-3x^2+25x-49 解説:Y=-3(x-4)^2+(x-4)-2+5 =-3x^2+25x-49 ちなみに、私は Y=-3x^2+x-2を、Y=a(x-p)^2+qの形にして、それからx軸方向に4の部分を(x-p-4)、y軸方向に5の部分をq+5にしようと思い、解いてみましたが、数は合わないし、回答は全く違った解説がしてあるので、さっぱり分かりません。 きっと初歩的なところで引っかかっているのかと思いますが、どうぞよろしくお願いします。 関数を教えて下さい 2つの関数f(x)=3^2、g(x)=3^k-x(kは正の定数)がある。また、y=g(x)のグラフとy軸との交点をAとする。 (1)f(0)の値を求めよ。また、点Aの座標をkを用いて表せ。 →解けました。 f(0)=1 A(0,3^k)です。 (2)y=f(x)とy=g(x)のグラフとの交点をP、点Aを通りx軸に平行な直線とy=f(x)のグラフとの交点をQ、点Qを通りy軸に平行な直線とy=g(x)のグラフとの交点をRとする。このとき、P、Q、Rの座標をそれぞれkを用いて表せ。 →a>0、a≠1のとき、a^m=a^n⇔m=nを使うそうです。 (3)(2)における3点P、Q、Rに対して、△OPAと△PQRの面積の比が3:1となるようなkの値を求めよ。ただし、Oは座標の原点とする。 →点PからOA、QRにそれぞれ垂線PH、PKを引くと △OPA=1/2OA・PH △PQR=1/2QR・PK であるから、△OPA=3△PQRより、方程式が立つ。3^□=Xのように文字でおくと、簡単な方程式になり解きやすい。を使うそうです。 解答と解説をよろしくお願いします。 指数関数・対数関数のグラフについて はじめまして。 y=a^xなどのグラフの形は存じているのですが、 y=a^(x+3) や y=a^(3-x) などといった、グラフはどのような形になるのでしょうか? また、y=a^xとy=log a x がy=xのグラフで対照なように、 y=a^(x+3) のグラフは y=log a (x+3)とy=xのグラフで対照な形になるのでしょうか? よろしくお願いします。 数学 2次関数 y=2x^2+4x のグラフをx軸の正方向へp, y軸の負の方向へqだけ平行移動したらy=2x^2-6x-1のグラフになった。 p,qの値を求めよ。 で右辺= 2(x^2+2x) = 2(x^2+2x+1)-2 = 2(x+1)^2 -2 平行移動後のグラフ y=2x^2-6x-1 の右辺を(1)式の形に変形すると、 右辺= 2(x^2-3x)-1 2(x-3/2x)^2-3/2^2-1 =2(x-3/2x)^2-9/8-9/9 =2(x-3/2x)^2-9/17になったのですが答えは-9/17のところが-11/2 でした。 どこが間違っているのかわからないので教えてください(>_<) 指数関数の問題です。教えて下さい! 2つの関数f(x)=3の2x乗、g(x)=3k-x乗(kは正の定数)がある。 またy=g(x)のグラフとy軸との交点をAとする。 y=f(x)とy=g(x)のグラフの交点をP、点Aを通りx軸に平行な直線とy=f(x) のグラフとの交点をQ、点Qを通りy軸に平行な直線とy=g(x)のグラフとの 交点をRとする。このときP,Q,Rの座標をそれぞれkを用いて表せ。 また、三点P,Q,Rに対して三角形OPAと三角形PQRの面積の比が3:1 となるようなkの値を求めよ。ただし、Oは座標の原点とする。 解き方がさっぱり分かりません。 詳しい解説をできたらよろしくお願いします! 二次関数標準形 二次関数の標準形y=a(x-p)^2+qについてこの質問の回答でなぜ移動後のグラフを求めているのに m=x-p、n=y-q、と移動前のグラフの点を求めているのかがよくわかりません。 解説お願いします。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q14129477349 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 中3 二次関数 動点 座標平面上に2つの関数y=x²とy=-1/2x²のグラフがある。 また、毎秒1の速さでx軸上を正の方向に進む点Pと 毎秒a(a>0)の速さでx軸上を負の方向に進む点Qがある。 Pを通りy軸に平行な直線とy=x²のグラフとの交点をA、 Qを通りy軸に平行な直線とy=-1/2x²のグラフとの交点をBとする。 いま、P、Qが原点Oを同時に出発するとき、次の問いに答えなさい。 (1)a=1のとき (1)直線ABが点(0、2)通るのは、P、Qが原点Oを出発してから何秒後か求めなさい。 (2) (1)のとき、四角形AQBPの面積を求めなさい。 (2)直線ABがつねに原点Oを通るようなaの値を求めなさい。 (1)(1)2√2秒後 (2)24√2 (2)a=2 だそうです。 分かりやすい解説をお願いします ご回答お願いします。 数学 2次関数 y=2x^2+4x のグラフをx軸の正方向へp, y軸の負の方向へqだけ平行移動したらy=2x^2-6x-1のグラフになった。 p,qの値を求めよ。 解答・解説お願いします(>_<) 2次関数について a>0として 2次関数 y=x∧2-2ax+2a+6…(*) このグラフの頂点をAとする。 2次関数(*)のグラフはX軸と異なる2点P.Qで交わっている。 (1) 頂点Aの座標をaを用いて表すと (x.y)(a.-a∧2+2a+6)で合ってますか? (2) aの値の範囲を求めよ (3) 頂点Aが直線y=3x上にある時、aの値を求めよ (4) △APQの面積が27である時、aの値を求めよ 上記をわかりやすく教えて頂けますか? 宜しくお願いします。 一次関数 関数 y=-x+12 のグラフと関数 y=2x のグラフとの交点を、A、y=-x+12とx軸との交点をBとします。また、線分OA上に点Pをとり、点Pを通りx軸に平行な直線と直線ABとの交点をQとします。 これについて、次の問いに答えなさい。 (1) 点Pのx座標が1のとき、線分PQの長さを求めなさい。 答え 9 (2) △AOQの面積と△BOQの面積が等しい時、直線OQの式を求めなさい。 答え y=1/2x (3) 線分PQの長さが8のとき、点Qのx座標を求めなさい。 答え 28/3 (1) (2) の求め方はわかりましたが、(3)が分かりません。 求め方を教えて下さい。 2次関数 2次関数 y=ax∧2+bx+cのグラフは 軸がx=1で2点(-1,3),(2,-3)を通る。 (1) 定数a,b,cの値は a=2 ,b=-4 ,c=-3 (y=2x∧2-4x-3より) (2) y<3となるxの値の範囲は -1<x<3 (3) 2次関数のグラフと直線y=kが 異なる2点P,Qで交わり、 線分 PQの 長さが6以上となるための kの値の範囲を求めよ。 (1)(2)は合ってますか? (3)の解き方をわかりやすく 教えて頂けますか? 宜しくお願いします。 2次関数の式の求め方 こちらの問題が解りません。。 【問題】 グラフが直線x=-1を軸とし、 2点(-2,0),(2,4)を通る放物線であるような2次関数を求めよ。 ≪私の解答≫ まず、x=-1ということから y=a(x+1)^+qという式が立てられる。 2点の座標をこの式にそれぞれ代入すると、 0=a+q…(1) 4=9a+q…(2) (1),(2)を連立方程式で解く。 (1)-(2)より、a=1/2となる。 私が正しく解けたのはここまでです;; ここから先、(1)にa=1/2を代入したところ q=-1/2。(2)に代入してもq=-1/2。 この様になってしまい、結果、私が出した答えは y=1/2x^+x+1/2です。 正しい解答では、y=1/2x^+xの様にqが0の形になっています。 なぜq=0となるのでしょうか?? 宜しくお願いします! 二次関数について 二次関数の問題が解けません。 y=x2-2xをy=a(x-p)2+qの形に変形せよっという問題なんですが 解き方がわかりません。 xの後の数字は累乗などです。 解き方について詳しく教えていただけないでしょうか? 関数について教えてください xの関数f(x)=|x(二乗)-4x+3|、g(x)=x+a (aは定数)について (1)y=f(x)のグラフとa=1 の場合のy=g(x)のグラフを同じ座標平面に書きなさい。 (2)y=f(x)のグラフとy=g(x)のグラフの交点の個数aについての場合分けを考えて答えなさいという問題を解いてみたら f(x)は絶対値がかかってます。x軸で、1と3のとき、また山のように盛り上がったグラフになります…後は直線y=x+1 を書く。ちなみに、山のところのグラフは、頂点のx座標は変わらなくて、y座標だけ、対称になって、また、y=ーx^2のグラフの平行移動した形です。つまりy=ーx^2+4x-3 です。 (2) は、x≦1,3≦x と1<x<3 で場合わけして考えますね。 f(x)-x=a という形にします。これで、左辺の関数を定義域にしたがって、書くと右辺はy=a の定数関数で直線よりも分かりやすい形になります。これで、y座標を自在に操って、交点の個数とそのためのaの条件をグラフから読み取る。最高4つ できるになったんですけど、あっていますか? もしも、まちがっていたら途中式も含めて教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
なるほど!画像付きの回答ありがとうございました。