• ベストアンサー

微分不等式は存在するの?

微分方程式というのがあるのなら、微分不等式というのも存在するのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ibm_111
  • ベストアンサー率59% (74/124)
回答No.4

E.ハイラー他著「錠微分方程式の数値解法I」p.55には、 「微分不等式」という章があります。 ということで、存在します。

bururutti-2
質問者

お礼

わざわざ参考書で確認して頂き有難うございました。 皆さんの回答を纏めてみると「存在はするけど微分方程式のような知名度は無い」ということになりますね。

その他の回答 (3)

noname#221368
noname#221368
回答No.3

 こんなので良ければ、作る事はけっこう簡単です。例えば、関数fとgが同じ定義域A(区間)で定義されていて、Aの左端点をaとしときます。   df/dx<dg/dx かつ f(a)<f(b) ⇒ A全体でf(x)<f(x)   (1) なんて定理(と普通言いませんが)は、良く使ってるはずです。微分不等式が余り強調されないのは、上記のように特別そう言わなくても、普通に考えて結果を出せるケースが多いから、のような気がします。  一方、微分方程式の方は、運動方程式のように法則を与える事が多いので、前面で出てくる気がします。  余談ですが(1)に関連して、平均値の定理は(1)のような事を証明するためにあり、「平均値の定理の真価は、それを不等式の形に書いた時に、最も良く現れる」と、ディユドネという数学者は言っています。ディユドネって知らないと思いますが、むかし一世を風靡した数学者で、じっさい彼の著作「現代解析の基礎,東京図書」では、不等式の形の平均値の定理が現れます。  この意見には、多々うなずける所はあるのですが、やっぱり「等号で表した平均値の定理(微分方程式?)」の方が、自分は使いやすいです。たぶん微分不等式が流行らないのは、そういう事もあるんだと思います。個人的意見ですけど・・・。

bururutti-2
質問者

お礼

不等式を立ててもすぐに求められる場合が多いのですか。 自分は実際に不等式を立てて求めたことが無いので分かりませんが・・・ 回答有難うございました。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

そりゃ、導関数を含んだ不等式を立てることは いくらでもできるだろうけど、そんなものを 解くことは、ほとんど望み薄だからね。 存在はするけれど、 「微分方程式というのがあるのなら」って前フリに つりあうような存在のしかたではない感じがする。

bururutti-2
質問者

お礼

たとえ不等式を立てても特に意味は無いのですね。 ・・・ならば微分不等式に利用価値を見出せば発展するんだろうか? 回答有難うございました。

  • Knotopolog
  • ベストアンサー率50% (564/1107)
回答No.1

定積分を用いた不等式は,よく見かけますが,微分を用いた不等式は,あまり見ません.

bururutti-2
質問者

お礼

あまり見ませんか。微分方程式があるなら微分不等式があっても良いと思うのだが・・・ 回答有難うございました。

関連するQ&A