ベストアンサー 数学 2011/03/04 20:24 図の△ABCで.点D.EはAD=DE=EBとなる点がある. BCを延長した直線と.点Dを通り線分ECに平行な直線との交点をFとする. 辺ACと線分DFの交点をGとする. GF=7cmのとき.DGの長さを求めなさいという問題がありまして私は7/3と書きました はたして7/3cmで合っているでしょうか? まちがっていたら教えてください お願いします 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー hakuyaku ベストアンサー率100% (3/3) 2011/03/04 20:30 回答No.1 7/3で正解だと思います。 GD=χとおくと、△AECで中点連結定理より、EC=2χ、 △BDFで中点連結定理より、DF=4χ したがって、GF=4χ-χ=3χ ∴3χ=7、χ=7/3 質問者 お礼 2011/03/05 14:51 ありがとうございます! 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 数学 図の△ABCで.点D.EはAD=DE=EBとなる点がある. BCを延長した直線と.点Dを通り線分ECに平行な直線との交点をFとする. 辺ACと線分DFの交点をGとする. GF=7cmのとき.DGの長さを求めなさいという問題がありまして私は7/3と書きました はたして7/3cmで合っているでしょうか? まちがっていたら教えてください(答えや途中計算など) お願いします 高校数学の問題です。 AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。 数学I 教えて下さい 三角形ABCにおいて、辺ABを3:2に内分する点をD、線分CDをt:1-t(0<t<1)に内分する点をE、2直線AC、BEの交点をFとする。 DFとBCが平行であるときt=?であり、このとき三角形BCEの面積は三角形ABCの?倍である。 ?のところが分かりません。どうやればいいのでしょうか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角形と比 画像でDE//BCとするときAD:DB=AE:ECとなることを次の手順で証明しなさい。 (1)点Dを通り辺ACに平行な直線をひき辺BCとの交点をFとする。 (2)△ADE∽△DBFを証明しAD:DB=AE:DFを示す。 (3)四角形DFCEがどんな四角形であるかを考えDFと長さが等しい線分をみつける。 (4)(2).(3)からAD:DB=AE:ECを示す。 教えて下さい!! 【中学数学】図形 ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv 線分比の問題 三角形ABCのおいて、頂点Aと辺BC上の点Dを結び、 点Dを通り辺ACの平行な直線と辺ABとの交点をE、点Eを通り線分ADに 平行な直線と辺BCとの交点をFとする。 1、BF=9cm FD=6cmのとき DCの長さ 2、EF:AD=2:3、BC=27cmのときのFDの長さ 1の答え 10cm 2 6cm この問題がよくわかりません・・・・。 教えてください!! 数学I 1辺の長さが4の正方形ABCDがある。辺AB上に点EをAE=2√2となるようにとり、線分DEと線分ACの交点をF、直線DEと直線BCの交点をGとするとき (1)DF:FE=√□:□ となる。 (2)ED:EG=□:√□-□ となる。 (3)FE:EG=□:□ となる。 □に一文字入ります。 答えの出し方も教えてください。 よろしくお願いします。 中学数学の問題 図の△ABCにおいて、辺AB、AC上の点D、EはAD:DB=1:3、AE:EC=2:3となる点である。 辺BC上にAC//DG、AB//EFとなるように、点F、Gをとり、線分DG、EFの交点をHとする。 このとき、△HFGの面積は△ABCの面積の何倍か。 という問題の解き方が分かりません。 教えていただきたいです! 数1 図形問題の解答お願いします H24.06 下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。 平面図形の辺の比の問題(数学A) △ABCにおいて、辺ABを2:3に内分する点をD、辺ACを3:1に内分する点をEとする。 そして点D,Eから辺BCと平行な直線を引き、それと辺AC、ABとの交点をF,Gとする。 (ア)DG:ABを求めよ。 (イ)DF:GEを求めよ。 解き方を教えてください。 ちなみに夏休みの宿題です。 数学 三角形ABCにおいて∠A>90°、BC=1とする。頂点Bから直線ACに垂線を下ろし、直線ACとの交点をDとする。また、頂点Cから直線ABに垂線を下ろし、直線ABとの交点をEとする。直線DEに頂点B,Cから垂線を下ろし、直線DEとの交点をそれぞれP、Qとする。∠ABC=α、∠ACB=βとおく。 (1)線分BP,EQの長さをα、βを用いてあらわせ。 (2)∠BAC=135°のとき、四角形PBCQの面積Sの最大値を求めよ。 とき方のヒントを教えてください! 中学数学の図形の平行についてです。 また、疑問が浮かびました>< 画像にて、線分AB,BC,DE,EF,AC,DFはどう平行なa,b,cに対して平行にスライドしても長さが変わらないので、 AB:BC=DE:EFとAB:AC=DE:DFは成り立ちますよね。 平行か分からない3直線a,b,cにおいて、AB:BC=DE:EFとAB:AC=DE:DFのいずれか片方だけでも成り立てば、3直線は平行といえますか? 次の質問の続きです→http://okwave.jp/qa/q9069719.html。 中二数学 図形 もう一問おねがいします。 △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。 数学I.Aセンター過去問題 △ABCにおいて、AB=AC=3、BC=2であるとき、内接円Iに点Eと点Fを3点C、E、Fが一直線上にこの順に並びかつCF=√2となるようにとる。 このとき、CE、EF/CEを求めよ。 さらに、円Iと辺BCとの接点をD、線分BEと線分DFとの交点をG、線分CGの延長と線分BFとの交点をMとする。 このとき、GM/CGを求めよ。 この問題の回答、解説をお願いします。 数学の問題です AB=4, BC=5, CA=6である△ABCにおいて、∠Aおよびその外角の二等分線が直線BCと交わる点を,それぞれD,Eとする。線分DEの長さを求めよ。 この問題についてですが、どちらの図が正しいですか。 数学の問題です AB=4, BC=5, CA=6である△ABCにおいて、∠Aおよびその外角の二等分線が直線BCと交わる点を,それぞれD,Eとする。線分DEの長さを求めよ。 この問題の三角形の図を教えていただけませんか。よろしくお願いいたします。 数学I 半径√21/3の円に内接する五角形ABCDEにおいて、AB=2 BC=1 DE=2 AC=CD=DAであるとき、 (1)AB=√□ cos∠BAD=√□/□□ BD=□ となる。 (2)四角形ABCDhの面積は□√□/□ となる。 (3)△ADEの面積は√□/□ となる。 (4)五角形ABCDEの面積は、□□√□/□ となる。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 1辺の長さが4の正方形ABCDがある。辺AB上に点EをAE=2√2となるようにとり、線分DEと線分ACの交点をF、直線DEと直線BCの交点をGとするとき (1)DF:FE=√□:□ となる。 (2)ED:EG=□:√□-□ となる。 (3)FE:EG=□:□ となる。 真ん中で問題が変わっています。 □に一文字入ります。 答えの出し方も教えてください。 よろしくお願いします。 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 図形の問題 三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。 平面図形の問題 模試の過去問なのですが解き方が全く分かりません。 鋭角三角形ABCの2辺AB,AC上にAD=DB,AE=ECを満たすように2点D,Eをとる。 また、線分DEの中点をM,AMとBCの交点をNとする。 このとき、AM:MNの値を求めよ。 どこかに平行線を引けばいいのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます!