簡単な確率の問題です。
簡単な確率の問題です。
ある本に次のような問題がありました。
「私には2人の子どもがおり、そのうちの少なくともひとりは男の子である。もうひとりが女の子である確率は確率はいくつか。(男女の出生率は50%ずつとする)」
正解はこうでした。2人の子どもの組み合わせは、第一子、第二子の順に、(1)男+男、(2)男+女、(3)女+男、(4)女+女の4パターンがあり、それぞれ実現する確率は全て等しい。この問題では(4)は外れるので、その人の子どものパターンは(1)か(2)か(3)である。その(1)と(2)と(3)は実現する確率が全て等しいので、もうひとりが女のこである確率は、(1)、(2)、(3)のうち、(2)と(3)が該当するので2/3である。
もし、それが正しいなら次の問題も同様に2/3が答えになるはずです。
「ある会場に2人の人がやってきました。少なくともひとりは男性だとすると、もう一人が女性である確率はいくつか。(人口の男女比は同数とする)」
この問題においては、2人が来たのが同時であろうと、時間差があろうと答えに影響はないはずです。
ところがこの場合、問題中の「少なくともひとり」である男性が帰ってしまうと、はじめからいなかったのと同じことになり、
「ある会場の一人の人がいるが、その人が女性である確率がいくつか。」という問題と同じことになると思うのです。その答えが「2/3」であるというのは明らかにおかしいです。
私の考えのどこが数学的におかしいのか、教えてください。
お礼
ありがとうございます 細かくお答えくださったのでベストアンサー差し上げます