※ ChatGPTを利用し、要約された質問です(原文:エルデスシュトラウスの予想素数で24の倍数+1)
エルデスシュトラウスの予想素数で24の倍数+1
このQ&Aのポイント
エルデスシュトラウスの予想である、4/N=1/X+1/Y+1/Zを直すと、(1)(N/X)+(2)(N/Y)+(3)(N/Z)=4です。
N=2×2×2×3×n+1です。N+T+Sが8の倍数であれば、4で割りXが出ます。その時、T+Sは7・15・23・31・・と(8の倍数-1=8t-1)です。
足して23になるTとSの組合わせと、T×SをX=2×(3×n+3)が約数として持つか調べます。そうしてt=4,5,6,7・・・と調べます。
今回は、Nが素数かつ24の倍数+1の場合に限って、説明をさせて貰います。それ以外はhttp://qanda.rakuten.ne.jp/qa6541074.htmlで証明済み。
エルデスシュトラウスの予想である、4/N=1/X+1/Y+1/Zを直すと、(1)(N/X)+(2)(N/Y)+(3)(N/Z)=4です。(1)N/Xを出来る限り4に近づけて、2つの数字(2)(3)を加えて4にするところから始めて、次第に(2)+(3)を大きくして行きます。
N=2×2×2×3×n+1です。N+T+Sが8の倍数であれば、4で割りXが出ます。その時、T+Sは7・15・23・31・・と(8の倍数-1=8t-1)です。出来る限り4に近いXは、(N+7)/4=(2×2×2×3×n+1+7)/(2×2)=2×2×2×(3×n+1)/(2×2)=2×(3×n+1)です。(N+7)/(2×(3×n+1))=N/(2×(3×n+1))+7/(2×(3×n+1))=N/X+T/(2×(3×n+1))+S/(2×(3×n+1))=4は必ず成立します。この時、T/(2×(3×n+1))とS/(2×(3×n+1))が共に、1/自然数の形になれば予想は成立します。何故なら、(N/X)+(1/y)+(1/z)=4が成立すれば、両辺に1/Nを掛け、(1/X)+(1/(N×y))+(3)(1/(N×z))=4/Nとなるからです。T×Sが(2×(3×n+1))=Xの約数であれば良いのです。
t=1の時、T+S=7です。組合せは1+6=2+5=3+4=7の3通りです。X=2×(3×n+1)が、1と6、2と5、3と4いずれかの約数を持てば、成立します。2はXの約数なので、Xが後3、3と2、3と5の内1組でも約数として持てば成立します。
成立しない時、t=2に移ります。T+S=15です。T+Sの組合せは、1+14=2+13=3+12=4+11=5+10=6+9=7+8=15の7通りです。Xは、(N+15)/4=(2×2×2×3×n+1+15)/(2×2)=2×2×2×(3×n+2)/(2×2)=2×(3×n+2)です。X=2×(3×n+2)は、2を既に約数に持つので、後7、13、2と2と3、2と11、5と5、3と3と3、2と2と7何れか1組でも、約数として持てば良いのです。
成立しない時、t=3に移ります。足して23になるTとSの組合わせと、T×SをX=2×(3×n+3)が約数として持つか調べます。そうしてt=4,5,6,7・・・と調べます。
この計算は、エクセルを使えば簡単に求められます。=IF(MOD(X,T×S)=0,1,””)の算式を入力すると、XがT×Sを約数に持つか否か分かります。Nの値が大きくなる程多くのtを使え、又Xの約数が増える為、成立する可能性は高まります。
N=1873の時、X=(1873+7)/4=470=2×5×47なので、2と5が約数にあるので、T=2、S=5です。4/1873=(1/1873)×(1873/470)+(1/1873)×(2/470)+(1/1873)×(5/470)=1/470+2/(470×1873)+5/(470×1873)=1/470+2/880310+5/880310=1/470+2/880310+5/880310=1/470+1/440155+1/176062=(1873+2+5)/880310=(1873+2+5)/880310=1880/880310=4/1873です。
また、N=1609の時、t=2でした。X=(1609+15)/4=406=2×7×29です。2×7が約数にあるので、T=1、S=14の組み合わせです。4/1609=(1/1609)×(1609/406)+(1/1609)×(1/406)+(1/1609)×(14/406)=1/406+1/(406×1609)+14/(406×1609)=1/406+1/653254+14/653254=1/406+1/653254+1/46661=(1609+1+14)/653254=1624/653254=4/1609でした。
N=8641などは、t=12でした。X=(8641+95)/4=8736/4=2184=2×2×2×3×7×13です。T+S=39+56=95で、(1/8641)×((8641/2184)+(39/2184)+(56/2184))=(1/2184)+(1/483896)+(1/336999)=(8641+39+56)/18871949=8736/18871949=4/8641でした。
Nが大きくなる程、成立する可能性はより大きくなるので、エルデスシュトラウスの予想は成立すると予想します。