※ ChatGPTを利用し、要約された質問です(原文:エルデスシュトラウスの予想を証明しました。完成版)
エルデスシュトラウスの予想を証明しました。完成版
このQ&Aのポイント
Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。
Nが偶数の場合、求める式を適用することでNについての式が得られます。
Nが奇数の場合、3の倍数、3の倍数+1、3の倍数+2の3通りがあり、それぞれの場合に適用する式が存在します。
前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。
Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。
(1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。
Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。
Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。
N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。
次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。
Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。
Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。
Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。
従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。
この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。